Vitamin B2: Difference between revisions
Feedback

From WikiLectures

(revision finalized, checked)
m (Bot: Cosmetic changes)
 
(One intermediate revision by one other user not shown)
Line 10: Line 10:
*
*
* This warning note is automatically inserted by inserting the template {{subst:Inserted article}}.
* This warning note is automatically inserted by inserting the template {{subst:Inserted article}}.
-------------------------------------------------------------------------------------------------------------->[[Category:Inserted articles]]
-------------------------------------------------------------------------------------------------------------->{{Was checked| 20120227221939 | [[User:Ekudl|MUDr. Eva Kudlová, CSc.]]|11205}}
{{Was checked| 20120227122501 | [[User:Ekudl|MUDr. Eva Kudlová, CSc.]]}}
[[File:Riboflavin.png|thumb|Vitamin B2 structure]]
[[File:Riboflavin.png|thumb|Vitamin B2 structure]]
Riboflavin or vitamin B<sub>2</sub> is part of coenzymes flavinadenine mononucleotide (FAD) and flavin mononucleotide (FMN), plays a key role in oxidative metabolism.
Riboflavin or vitamin B<sub>2</sub> is part of coenzymes flavinadenine mononucleotide (FAD) and flavin mononucleotide (FMN), plays a key role in oxidative metabolism.
===Source===
=== Source ===
A small amount is found in many foods. Main sources are meat, milk and milk products; good sources are also fish, offal (inner organs), eggs, and whole grain cereals. Milling of cereals removes most of vitamin B<sub>2</sub> - some countries (e.g. USA) fortify cereal products with riboflavin.
A small amount is found in many foods. Main sources are meat, milk and milk products; good sources are also fish, offal (inner organs), eggs, and whole grain cereals. Milling of cereals removes most of vitamin B<sub>2</sub> - some countries (e.g. USA) fortify cereal products with riboflavin.


Line 29: Line 28:
}} </ref>
}} </ref>


===Deficiency===
=== Deficiency ===
According to several population studies, the deficiency is widespread in developing countries, where diet is poor in animal foods, vegetables and fruits, and where cereals are milled (white flour)<ref name="Vitamins 1998">{{Cite
According to several population studies, the deficiency is widespread in developing countries, where diet is poor in animal foods, vegetables and fruits, and where cereals are milled (white flour)<ref name="Vitamins 1998">{{Cite
| type = book
| type = book
Line 72: Line 71:




===Excess===
=== Excess ===
Signs of excess are not known.
Signs of excess are not known.
<noinclude>
<noinclude>
Line 79: Line 78:
* [[Fat Soluble Vitamins]]
* [[Fat Soluble Vitamins]]
* [[Water Soluble Vitamins]]
* [[Water Soluble Vitamins]]
===Reference===
=== Reference ===
<references />
<references />
=== Bibliography ===
=== Bibliography ===
Line 95: Line 94:
}}
}}
</noinclude>
</noinclude>
[[Category:Inserted articles]]
[[Category:Hygiene]]
[[Category:Hygiene]]
[[Category:Epidemiology]]
[[Category:Epidemiology]]

Latest revision as of 18:20, 8 December 2014

This article was checked by pedagogue
This article was checked by pedagogue  

This article ws checked by pedagogue, but later was changed.

Checked version of the article can be found here.

See also comparation of actual and checked version.

Changed checked article.png
Vitamin B2 structure

Riboflavin or vitamin B2 is part of coenzymes flavinadenine mononucleotide (FAD) and flavin mononucleotide (FMN), plays a key role in oxidative metabolism.

Source[edit | edit source]

A small amount is found in many foods. Main sources are meat, milk and milk products; good sources are also fish, offal (inner organs), eggs, and whole grain cereals. Milling of cereals removes most of vitamin B2 - some countries (e.g. USA) fortify cereal products with riboflavin.

Recommended daily intake for adults: 1.2 to 1.5 mg [1]

Deficiency[edit | edit source]

According to several population studies, the deficiency is widespread in developing countries, where diet is poor in animal foods, vegetables and fruits, and where cereals are milled (white flour)[2]. Frequently the deficiency is secondary due to malabsorption, enterocolitis, coeliac disease , chronic hepatitis; in children often after the use of broad-spectrum antibiotics. It may develop in cancer, cardiac disease, diabetes[2]

Clinical picture: The description of the signs of riboflavin deficiency is somewhat inconsistent in various scientific publications. Riboflavin deficiency occurs almost always together with deficiencies of other group B vitamins, which may cause some of the signs decribed in literature[3]. The signs most frequently described are: angular stomatitis, peeling lips (cheilosis), glossitis, and normocytic normochromic anemia[3].

Laboratory evaluation: decreases secretion of vitamin B2 in urine (normal values are 106–638 nmol/l[4]) , decreased concentrations of glutathione and glutathione reductase in erythrocytes.


Excess[edit | edit source]

Signs of excess are not known.

Links[edit | edit source]

Related articles[edit | edit source]

Reference[edit | edit source]

  1. Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Sweizerische Gesellschaft für Ernährungforschung, Sweizerische Vereinigung für Ernährung. . Referenzwerte für die Nährstoffzufuhr (DACH). 1. edition. Frankfurt am Main : Umschau/Braus, 2000. 216 pp. ISBN 3-8295-7114-3.
  2. Jump up to: a b STANDING COMMITTEE ON THE SCIENTIFIC EVALUATION OF DIETARY REFERENCE INTAKES AND ITS PANEL ON FOLATE, OTHER B VITAMINS, AND CHOLINE AND SUBCOMMITTEE ON UPPER REFERENCE LEVELS OF NUTRIENTS, FOOD AND NUTRITION BOARD, INSTITUTE OF MEDICINE,. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline [online] 1. edition. Washington D.C : National Academic Press, 1998. 592 pp. Available from <https://download.nap.edu/openbook.php?isbn=0309065542>. ISBN 0-309-59725-0.
  3. Jump up to: a b WHO, FAO,. Vitamin and mineral requirements in human nutrition [online] 2. edition. Geneva : WHO, 2004. 341 pp. Available from <http://whqlibdoc.who.int/publications/2004/9241546123.pdf>. ISBN 924154612 3.
  4. ORDINACE.CZ,. Laboratorní hodnoty : in Czech: Normal values for laboratory tests The database has been created in collaboration with the Institute of clinical biochemistry and laboratory diagnostics, General University Hospital in Prague [online]. Pears Health Cyber, s. r. o. 2012, The last revision 2012-02-21, [cit. 2012-02-24]. <http://www.ordinace.cz/laboratorni-hodnoty/238/#detail>.

Bibliography[edit | edit source]

  • BENCKO, Vladimir, et al. Hygiene and epidemiology : selected chapters. 2. edition. Prague. 2008. ISBN 80-246-0793-X.