Advanced glycation products: Difference between revisions
Feedback

From WikiLectures

(Original text was from Wikiskripta: Produkty pokročilé glykace (https://www.wikiskripta.eu/w/Produkty_pokro%C4%8Dil%C3%A9_glykace))
 
(Edit of some mistakes)
Line 1: Line 1:
__toc__
__toc__
'''Produkty pokročilé glykace''' (''advanced glycation endproducts'', '''AGEs''') jsou heterogenní skupinou látek, mezi které patří pentosidin, GOLD (glyoxal-lysine dimmer), MOLD (methylglyoxal-lysine dimmer)<ref name="reactiv compound">{{Citace
  | typ = článek
  | příjmení1 = Miyata
  | jméno1 = T
  | příjmení2 = Sugiyama
  | jméno2 = S
  | příjmení3 = Saito
  | jméno3 = A
  | kolektiv = ano
  | článek = Reactive carbonyl compounds related uremic toxicity (&quot;carbonyl stress&quot;)
  | časopis = Kidney Int  Suppl
  | rok = 2001
  | svazek = 78
  | strany = S25-31
  | url = https://www.ncbi.nlm.nih.gov/pubmed/11168978
  | issn = 0098-6577
}}</ref>.


Charakteristická je pro ně '''žlutohnědá pigmentace''' a [[fluorescence]]. Jsou schopny '''modifikovat biologické struktury'''. Reagují se specifickými receptory, např. '''RAGE'''. Mají význam v patogenezi pozdních komplikací [[diabetes mellitus|diabetu mellitu]] a chronických onemocnění jako [[chronické renální selhání|chronického renálního selhání]], [[ateroskleróza|aterosklerózy]], neurodegenerativních onemocnění a dalších.
Advanced Glycation ( ''advanced glycation endproducts'' , AGEs ) are a heterogeneous group of substances, including pentosidine, GOLD (glyoxal-lysine dimmer) MOLD (methylglyoxal-lysine dimmer)  .


U bílkovin dochází při jejich glykaci a následých změnách ke '''změně fyzikálních i chemických vlastností'''. Zahrnují např. změnu rozpustnosti, náboje a izoelektrického bodu, zesítění řetězců (''crosslinking''), zvýšenou rezistenci k tepelné denaturaci a stabilitu vůči snížení [[pH]].
They are characterized by yellow-brown pigmentation and fluorescence . They are able to modify biological structures . They react with specific receptors, eg RAGE . They are important in the pathogenesis of late complications of diabetes mellitus and chronic diseases such as chronic renal failure , atherosclerosis , neurodegenerative diseases and others.


AGEs vznikají jako pokročilé produkty neenzymatické glykace bílkovin. Tento děj je úzce spjatý i s [[Oxidačný stres|oxidačním stresem]] a karbonylovým stresem.  
Proteins change their physical and chemical properties during their glycation and subsequent changes . They include e.g. changing solubility, charge and isoelectric point chain crosslinking ( ''crosslinking'' ), increased resistance to thermal denaturation and stability against decrease in pH .


== Neenzymatická glykace ==
AGEs arise as advanced products of non-enzymatic protein glycation. This process is closely related to oxidative stress and carbonyl stress.
Při neenzymatické glykaci proteinů reagují '''volné aminoskupiny''' bílkovin (především postranní skupiny lysinu a argininu, v menší míře i postranní skupiny histidinu) '''s karbonylovými skupinami''' redukujících cukrů bez katalytického působení [[enzym]]ů. Tato reakce byla poprvé popsána Louisem Maillardem, který pozoroval hnědnutí bílkovin při zahřívání s cukry.


===Maillardova reakce===
== Non-enzymatic glycation ==
[[Soubor:Glykace proteinů.png|náhled|Hlavní kroky neenzymové glykace a tvorby aldehydů typu glyoxalu.]]
In non-enzymatic glycation of proteins, the free amino groups of proteins (especially the lysine and arginine side groups, to a lesser extent the histidine side groups) react with the carbonyl groups of reducing sugars without the catalytic action of enzymes . This reaction was first described by Louis Maillard, who observed the browning of proteins when heated with sugars.
;Iniciace
Reakce je iniciována neenzymovou kondenzací aldehydové skupiny redukujícího cukru a aminové skupiny za vzniku aldiminu ([[Schiffova base|Schiffovy báze]]). Reakce probíhá rychle a k dosažení rovnováhy dochází v průběhu několika hodin. Tato reakce je snadno reverzibilní.  


;Propagace
===Maillard reaction===
Schiffova báze během několika dní podléhá chemickému přesmyku za vzniku stabilnějších struktur, které se označují jako tzv. '''Amadoriho produkty'''. Tyto struktury mají charakter '''ketoaminu'''. Amadoriho produkty jsou do určité míry reverzibilní, jejich rovnováha je značně posunuta ve směru jejich tvorby. Ustálený stav nastává během 20–30 dní.


Dalšími reakcemi mohou vznikat karbonylové sloučeniny jako glyoxal, methylglyoxal, deoxyglukoson.
; Initiation


Deoxyglukoson vzniká při vyšším pH, kdy Amadoriho produkty enolizují v pozici mezi druhým a třetím uhlíkem a tím eliminují amin z prvního uhlíku. Tyto sloučeniny jsou '''velmi reaktivní''' a jsou to vlastní propagátory neenzymatické glykace, které způsobují '''nevratné molekulární změny proteinů'''.
The reaction is initiated by non-enzymatic condensation of the aldehyde group of the reducing sugar and the amine group to form aldimine ( Schiff base ). The reaction proceeds rapidly and equilibrium occurs within a few hours. This reaction is easily reversible.


;Vznik produktů pokročilé glykace
; Promotion
[[Soubor:AGEs.png | náhled | Vybrané produkty pokročilé glykace a látky, ze kterých vznikají.]]
V poslední fázi reagují Amadoriho produkty či další sloučeniny s volnými aminoskupinami proteinů s dlouhou životností ([[kolagen]], [[elastin]], [[myelin]]). Vznikají produkty pokročilé glykace – '''AGE-sloučeniny'''. Jejich vznik je prakticky ireverzibilní a AGEs trvale poškozují tkáně, ve kterých se '''ukládají'''.


== Oxidační stres ==
Schiff's base undergoes chemical rearrangement within a few days to form more stable structures, which are referred to as Amadori products . These structures have the character of ketoamine . Amadori's products are to some extent reversible, their balance is significantly shifted in the direction of their creation. Steady state occurs within 20-30 days.
Nerovnováha mezi tvorbou [[Základní reaktivní formy kyslíku a dusíku|reaktivních forem]] a [[antioxidanty|antioxidantů]], které je z organismu odstraňují. Vzniklá rovnováha je posunuta ve prospěch reaktivních forem.


Mezi reaktivní formy patří hydroxylový radikál, superoxid a sloučeniny vzniklé z Cl, NO<sub>2</sub><sup>−</sup>, H<sub>2</sub>O<sub>2</sub>, Fe, Cu, dále pak herbicidy, pesticidy a jiné. Tyto látky poškozují biologické struktury – [[lipidy]] (lipoperoxidace), proteiny (zesítění proteinů), [[cukry]] (glykosylace) a NK ([[mutace]] [[DNA (nukleová kyselina)|DNA]]).
Other reactions can form carbonyl compounds such as glyoxal, methylglyoxal, deoxyglucosone.


Mohou být z těla odstraněny antioxidanty ([[Kyselina askorbová|vit.C]], [[vitamin E|vit.E]], [[selen]], [[Beta-karoten]]).
Deoxyglucosone is formed at higher pH, when Amadori products enolize in the position between the second and third carbon and thus eliminate the amine from the first carbon. These compounds are highly reactive and are intrinsic promoters of non-enzymatic glycation, which cause irreversible molecular changes in proteins.
;Formation of advanced glycation products
In the last phase, Amadori products or other compounds react with the free amino groups of long-lived proteins ( collagen , elastin , myelin ). Advanced glycation products - AGE-compounds - are formed . Their formation is practically irreversible and AGEs permanently damage the tissues in which they are stored .


{{Podrobnosti|Základní reaktivní formy kyslíku a dusíku}}
== Oxidative stress ==
An imbalance between the formation of reactive forms and antioxidants that remove them from the body. The resulting equilibrium is shifted in favor of reactive forms.
 
Reactive forms include hydroxyl radical, superoxide and compounds formed from Cl, NO 2 - , H 2 O 2 , Fe, Cu, as well as herbicides, pesticides and others. These substances damage biological structures - lipids (lipoperoxidation), proteins (protein cross-linking), sugars (glycosylation) and NK ( DNA mutations ).
 
Antioxidants ( vit.C , vit.E , selenium , Beta-carotene ) can be removed from the body .{{Podrobnosti|Základní reaktivní formy kyslíku a dusíku}}
{{Podrobnosti|Antioxidační ochrana lidského těla}}
{{Podrobnosti|Antioxidační ochrana lidského těla}}


== Karbonylový stres ==
== Carbonyl stress ==
Zvýšení reaktivních karbonylových sloučenin vede k '''postupnému orgánovému poškození'''. Může být způsobené jejich zvýšenou tvorbou nebo jejich sníženým odbouráváním (chyba eliminace – aldehyddehydrogenáza) a následným vylučováním.  
An increase in reactive carbonyl compounds leads to gradual organ damage . It can be caused by their increased production or their reduced degradation (elimination error - aldehyde dehydrogenase) and subsequent excretion.  
 
Carbonyl compounds are very closely related to oxidative stress, hyperlipidemia and hyperglycemia. Carbonyl compounds include glyoxal , glycoaldehyde , hydroxynonenal , methylglyoxal , 2-deoxyglucosone . These compounds can be formed from carbohydrates, amino acids and fats.{{Podrobnosti|Karbonylový stres}}


Karbonylové sloučeniny mají velmi blízký vztah k oxidačnímu stresu, [[Hyperlipidémie|hyperlipidémii]] a hyperglykémii. Mezi karbonylové sloučeniny patří '''glyoxal''', '''glykoaldehyd''', '''hydroxynonenal''', '''methylglyoxal''', '''2-deoxyglukoson'''. Tyto sloučeniny mohou vznikat ze sacharidů, aminokyselin a tuků.
==RAGE receptor ==
RAGE is a transmembrane protein that serves as a receptor for advanced glycation products. They belong to the immunoglobulin superfamily. It most commonly occurs on endothelial cells (areas typically affected by atherosclerosis), macrophages, and microglia in brain tissue.


{{Podrobnosti|Karbonylový stres}}
=== AGEs-RAGE interaction ===
Interactions between AGEs-RAGE cause intracellular signaling. It also leads to oxidative stress and activation of MAP kinases. These two mechanisms lead to the activation of transcription factors such as NF-κB (nuclear factor kappa B). NF-κB affects the expression of genes important for immunity, inflammatory response, cell growth, cell death and embryonic development.


==RAGE receptor ==
=== Effect of RAGE receptor in the body ===
RAGE je transmembránový protein, který slouží jako receptor pro produkty pokročilé glykace. Řadí se do [[imunoglobulin]]ové superrodiny. Nejčastěji se vyskytuje na buňkách [[endotel]]u (oblasti typicky postižené aterosklerózou), [[makrofágy|makrofázích]] a na [[mikroglie|mikrogliích]] v mozkové tkáni.
Activation of NF-κB stimulates the production of cytokines (IL-1, TN-α, interferon γ) and growth factors (IGF-1, PDGF). This results in the expression of adhesive molecules, increased cell proliferation, increased vascular permeability. It also stimulates macrophage migration, endothelin production. The synthesis of collagen IV, proteoglycans and fibronectin increases . At the site of inflammation , it stimulates the formation of carboxymethyllysine (CML) in phagocytes.
 
==Negative effects of AGEs in the organism==
 
=== Complications of Diabetes mellitus ===
Chronic changes in diabetes are the result of hyperglycemia, which leads to increased protein glycation and subsequent oxidative and carbonyl stress. Carbonyl and oxidative stress alone leads to the formation of AGEs and ALEs.


===Interakce AGEs-RAGE===
However, this mechanism is not the only one that leads to organ damage in diabetes. For example , hyperglycemia alone increases the amount of AGEs and ALEs (non-enzymatic glycation) - a disorder of lipid metabolism. It should be noted that the development of complications in diabetes is not caused by a single mechanism. It is a complex and to some extent cascading process that is highly interconnected.
Interakce mezi AGEs-RAGE způsobí intracelulární signalizaci. Zároveň vede k oxidačnímu stresu a aktivaci MAP-kináz. Tyto dva mechanismy vedou k aktivaci [[transkripční faktory|transkripčních faktorů]] např. NF-κB (nukleární faktor kappa B). NF-κB ovlivňuje expresi genů důležitých pro imunitu, zánětlivou odpověď, buněčný růst, buněčnou smrt a embryonální vývoj.


===Působení RAGE receptoru v organismu ===
; Metabolic changes
Aktivace NF-κB faktoru stimuluje tvorbu '''[[cytokin]]ů''' (IL-1, TN-α, interferon γ) a '''růstových faktorů''' (IGF-1, PDGF). To má za následek expresi adhezivních molekul, zvýšení buněčné proliferace, zvýšení vaskulární permeability. Dále podněcuje migraci makrofágů, tvorbu endotelinu. Zvyšuje se syntéza [[kolagen]]u IV, [[proteoglykany|proteoglykanů]] a fibronektinu. V místě [[zánět]]u podněcuje ve fagocytech tvorbu karboxymethyllysinu (CML).


==Negativní působení AGEs v organismu==
Non-enzymatic glycation - Maillard reaction.
===Komplikace při Diabetes mellitus===
Chronické změny u diabetu jsou následkem hyperglykémie, která vede ke zvýšené '''glykaci proteinů''' a následnému oxidačnímu a karbonylovému stresu. Samotný karbonylový a oxidační stres vede k tvorbě AGEs a ALEs.  


Tento mechanismus ovšem není jediný, který vede k orgánovým poškozením při diabetu. Například '''samotná hyperglykémie zvyšuje množství AGEs a ALEs''' (neenzymatická glykace) – dochází k poruše lipidového metabolismu. Třeba si uvědomit, že vznik komplikací při diabetu není způsoben jedním mechanismem. Jedná se o '''komplexní''' a do jisté míry kaskádovitý proces, který je značně propojen.
Intracellular hyperglycemia occurs in tissues where insulin is not required (eye lens, nerve tissue, kidneys). Glucose is metabolized to sorbitol and fructose , which causes hyperosmolarity of the cells and the resulting osmotic damage to the cell . Sorbitol also damages ion pumps , leading to neuropathies and aneurysms in the retina .


;Metabolické změny
; Macrovascular complications
Neenzymová glykace – Maillardova reakce.


Dochází k intracelulární hyperglykémii ve tkáních, kde není potřeba [[inzulin]] (oční čočka, nervová tkáň, ledviny). Glukóza se metabolizuje na sorbitol a [[fruktóza|fruktózu]], což vyvolá [[osmolarita|hyperosmolaritu]] buněk a tím vzniklé '''osmotické poškození buňky'''. Sorbitol také '''poškozuje iontové pumpy''', což vede k neuropatiím a [[aneurysma]]tům v [[sítnice|sítnici]].
Accelerated development of atherosclerosis, which leads to coronary heart disease , coronary heart disease .


;Makrovaskulární komplikace
; Microvascular complications
Urychlený rozvoj aterosklerózy, který vede k [[ICHS]], [[chronická ischemická choroba dolních končetin|ICHDK]].


;Mikrovaskulární komplikace
Nephropathy leads to kidney failure. Deposits are stored in the basement membrane, which leads to its thickening and charge change. Furthermore, growth factors are secreted, vascular permeability increases, densification and mesangial matrix increase. Vascular wall proteins are modified (crosslinking). Glycation and oxidation of LDL particles and collagen occurs, leading to endothelial damage.
Nefropatie vede k selhávání ledvin. Ukládají se depozita v basální membráně, což vede k jejímu ztluštění a změně náboje. Dále dochází k sekreci růstových faktorů, zvýšení vaskulární permeability, zhuštění a zmnožení mezangiální matrix. Proteiny cévní stěny se modifikují (crosslinking). Dochází ke glykaci a oxidaci LDL částic a kolagenu, což vede k poškození endotelu.


;Retinopatie
;
* Neproliferativní forma – mikroaneurysmata, drobná krvácení, [[exsudát]]y, [[edém]].
; Retinopathy
* Preproliferativní forma – avaskulární úseky, plošná krvácení.
* Proliferativní forma – tvorba nových cév, fibróza, krvácení do sklivce.


===Kardiovaskulární komplikace===
* Non-proliferative form - microaneurysms, minor bleeding, exudates , edema .
Modifikace proteinů cévní stěny (crosslinking). Dochází ke zvýšené produkci extracelulární matrix, glykaci a oxidaci LDL částic a také poškození endotelu (glykace kolagenu).
* Preproliferative form - avascular sections, area hemorrhages.
* Proliferative form - formation of new blood vessels, fibrosis, vitreous hemorrhage.


Dalšími komplikacemi jsou poškození artérií (zeslabení cévní stěny, změny cévní propustnosti) a ateroskleróza.
=== Cardiovascular complications ===
Modification of vascular wall proteins (crosslinking). There is increased extracellular matrix production, glycation and oxidation of LDL particles, as well as endothelial damage (collagen glycation).


===Komplikace dalších systémů===
Other complications include arterial damage (weakening of the vessel wall, changes in vascular permeability) and atherosclerosis.
* Nervový systém – Hromadění AGEs v pyramidových buňkách (neuronech) má zřejmě souvislost s [[Alzheimerova choroba|Alzheimerovou chorobou]], obecně lze říci, že jde o neurodegenerativní onemocnění.
* Dýchací systém – Chronická plicní onemocnění.
* GIT – [[Jaterní cirhóza]].
* Klouby – [[Revmatoidní artritida]].


== Terapeutické možnosti redukce tvorby účinku AGEs ==
=== Complications of other systems ===
Zamezení negativních vlivů AGEs v organismu lze zamezit obecně na 3 úrovních:
# '''Vznik AGEs''' – Pečlivá kompenzace diabetu (dieta, snížení hyperglykémie a hyperlipidémie, snížení oxidačního stresu).
# '''Chemická degradace zesítěných proteinů'''.
# '''Interakce AGEs-RAGE''' – Ovlivnění účinku na receptor anti RAGEAb. Zvýšení exprese solubilního receptoru AGE (sRAGE) – inhibitor toxických účinků AGEs. Jeho expresi zvyšují některé inhibitory agiotenzin konvertujícího enzymu (ACEI), např. {{HVLP|ramipril}} či {{HVLP|perindopril}}<ref>
{{Citace
  | typ = článek
  | příjmení1 = Forbes
  | jméno1 = Josephine M
  | příjmení2 = Thorpe
  | jméno2 = Suzanne R
  | příjmení3 = Thallas-Bonke
  | jméno3 = Vicki
  | kolektiv = ano
  | článek = Modulation of soluble receptor for advanced glycation end products by angiotensin-converting enzyme-1 inhibition in diabetic nephropathy
  | časopis = J  Am  Soc  Nephrol
  | rok = 2005
  | číslo = 8
  | svazek = 16
  | strany = 2363-72
  | url = https://www.ncbi.nlm.nih.gov/pubmed/15930093
  | issn = 1046-6673
}}
</ref>. Některá antidiabetika blokují signalizaci přes RAGE ({{HVLP|pioglitazon}}<ref>
{{Citace
  | typ = článek
  | příjmení1 = Di
  | jméno1 = Bei-Bing
  | příjmení2 = Li
  | jméno2 = Hong-Wei
  | příjmení3 = Li
  | jméno3 = Wei-Ping
  | kolektiv = ano
  | článek = Pioglitazone inhibits high glucose-induced expression of receptor for advanced glycation end products in coronary artery smooth muscle cells
  | časopis = Mol Med Rep
  | rok = 2015
  | číslo = 4
  | svazek = 11
  | strany = 2601-7
  | url = https://www.ncbi.nlm.nih.gov/pubmed/25523934
  | issn = 1791-2997 (print), 1791-3004
}}</ref>, {{HVLP|empagliflozin}}<ref>
{{Citace
  | typ = článek
  | příjmení1 = Ojima
  | jméno1 = A
  | příjmení2 = Matsui
  | jméno2 = T
  | příjmení3 = Nishino
  | jméno3 = Y
  | kolektiv = ano
  | článek = Empagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis
  | časopis = Horm  Metab  Res
  | rok = 2015
  | svazek = Epub ahead of print
  | strany = Epub ahead of print
  | url = https://www.ncbi.nlm.nih.gov/pubmed/25611208
  | issn = 0018-5043 (print), 1439-4286
}}</ref>).


* Nervous system - The accumulation of AGEs in pyramidal cells (neurons) is probably related to Alzheimer's disease , in general it can be said to be a neurodegenerative disease.
* Respiratory system - Chronic lung diseases.
* GIT - Liver cirrhosis .
* Joints - Rheumatoid arthritis .


V dnešní době probíhají neustálé studie na ovlivnění hladiny AGEs a jejich nežádoucích účinků.
== Therapeutic options effect of reducing the formation of AGEs ==
Do této souvislosti můžeme zařadit látky např. taurin, carnosin, aspirin, pyridoxamin, aminoguanidin, kys. alfa-lipoová.
Prevention of negative effects of AGEs in the body can be prevented in general at 3 levels:


{{Netisknout|
# Development of AGEs - Careful compensation of diabetes (diet, reduction of hyperglycemia and hyperlipidemia, reduction of oxidative stress).
<noinclude>
# Chemical degradation of cross-linked proteins .
== Odkazy ==
# AGEs-RAGE interactions - Effect on anti-RAGEAb receptor effect. Increased expression of soluble AGE receptor (sRAGE) - inhibitor of AGEs toxic effects. Its expression is increased by some agiotensin converting enzyme (ACEI) inhibitors, such as ramipril or perindopril  . Some antidiabetics block RAGE signaling (pioglitazone  , empagliflozin  ).
=== Související články ===
* [[Diabetes mellitus 2. typu]]
* [[Diabetes mellitus 1. typu]]
* [[Diabetes mellitus]]
* [[Syndrom defektní protiregulace]]
===Reference===
<references />
=== Použitá literatura ===
*[https://en.wikipedia.org/wiki/Advanced_glycation_end-product Advanced glycation end-product wikipedia.org]
<noinclude>
*{{Citace
| typ = kniha
| příjmení1 = Kalousová
| jméno1 = Marta
| kolektiv = ano
| titul = Patobiochemie ve schématech
| vydání = 1
| místo = Praha
| vydavatel = Grada
| rok = 2006
| isbn = 80-247-1522-8
}}
*{{Citace
| typ = web
| příjmení1 = TOMÁŠ OBŠIL
| jméno1 = ZDENĚK PAVLÍČEK
| url = http://www.chemicke-listy.cz/docs/full/1997_08_558-569.pdf
| název = GLYKACE PROTEINŮ A FOSFOLIPIDŮ: MAILLARDOVA REAKCE IN VIVO
| citováno = 2011-01-16
}}
===Zdroj===
* {{Citace|typ = web|příjmení1 = Krtil|jméno1 = Jan|název = Neenzymatické glykace, inzulinová rezistence, metabolický syndrom|rok = 2017
|citováno = 16.12.2018
|url = https://ulbld.lf1.cuni.cz/file/2889/metabolic-syndrome-2017.pdf}}
</noinclude>
}}


[[Kategorie:Patobiochemie]]
There are ongoing studies on the effects of AGEs and their side effects. In this context, we can include substances such as taurine, carnosine, aspirin, pyridoxamine, aminoguanidine, alpha-lipoic acid.
[[Kategorie:Klinická biochemie]]

Revision as of 15:35, 16 December 2021

Advanced Glycation ( advanced glycation endproducts , AGEs ) are a heterogeneous group of substances, including pentosidine, GOLD (glyoxal-lysine dimmer) MOLD (methylglyoxal-lysine dimmer)  .

They are characterized by yellow-brown pigmentation and fluorescence . They are able to modify biological structures . They react with specific receptors, eg RAGE . They are important in the pathogenesis of late complications of diabetes mellitus and chronic diseases such as chronic renal failure , atherosclerosis , neurodegenerative diseases and others.

Proteins change their physical and chemical properties during their glycation and subsequent changes . They include e.g. changing solubility, charge and isoelectric point chain crosslinking ( crosslinking ), increased resistance to thermal denaturation and stability against decrease in pH .

AGEs arise as advanced products of non-enzymatic protein glycation. This process is closely related to oxidative stress and carbonyl stress.

Non-enzymatic glycation

In non-enzymatic glycation of proteins, the free amino groups of proteins (especially the lysine and arginine side groups, to a lesser extent the histidine side groups) react with the carbonyl groups of reducing sugars without the catalytic action of enzymes . This reaction was first described by Louis Maillard, who observed the browning of proteins when heated with sugars.

Maillard reaction

Initiation

The reaction is initiated by non-enzymatic condensation of the aldehyde group of the reducing sugar and the amine group to form aldimine ( Schiff base ). The reaction proceeds rapidly and equilibrium occurs within a few hours. This reaction is easily reversible.

Promotion

Schiff's base undergoes chemical rearrangement within a few days to form more stable structures, which are referred to as Amadori products . These structures have the character of ketoamine . Amadori's products are to some extent reversible, their balance is significantly shifted in the direction of their creation. Steady state occurs within 20-30 days.

Other reactions can form carbonyl compounds such as glyoxal, methylglyoxal, deoxyglucosone.

Deoxyglucosone is formed at higher pH, when Amadori products enolize in the position between the second and third carbon and thus eliminate the amine from the first carbon. These compounds are highly reactive and are intrinsic promoters of non-enzymatic glycation, which cause irreversible molecular changes in proteins.

Formation of advanced glycation products

In the last phase, Amadori products or other compounds react with the free amino groups of long-lived proteins ( collagen , elastin , myelin ). Advanced glycation products - AGE-compounds - are formed . Their formation is practically irreversible and AGEs permanently damage the tissues in which they are stored .

Oxidative stress

An imbalance between the formation of reactive forms and antioxidants that remove them from the body. The resulting equilibrium is shifted in favor of reactive forms.

Reactive forms include hydroxyl radical, superoxide and compounds formed from Cl, NO 2 - , H 2 O 2 , Fe, Cu, as well as herbicides, pesticides and others. These substances damage biological structures - lipids (lipoperoxidation), proteins (protein cross-linking), sugars (glycosylation) and NK ( DNA mutations ).

Antioxidants ( vit.C , vit.E , selenium , Beta-carotene ) can be removed from the body . Iron

Iron

Carbonyl stress

An increase in reactive carbonyl compounds leads to gradual organ damage . It can be caused by their increased production or their reduced degradation (elimination error - aldehyde dehydrogenase) and subsequent excretion.

Carbonyl compounds are very closely related to oxidative stress, hyperlipidemia and hyperglycemia. Carbonyl compounds include glyoxal , glycoaldehyde , hydroxynonenal , methylglyoxal , 2-deoxyglucosone . These compounds can be formed from carbohydrates, amino acids and fats. Iron

RAGE receptor

RAGE is a transmembrane protein that serves as a receptor for advanced glycation products. They belong to the immunoglobulin superfamily. It most commonly occurs on endothelial cells (areas typically affected by atherosclerosis), macrophages, and microglia in brain tissue.

AGEs-RAGE interaction

Interactions between AGEs-RAGE cause intracellular signaling. It also leads to oxidative stress and activation of MAP kinases. These two mechanisms lead to the activation of transcription factors such as NF-κB (nuclear factor kappa B). NF-κB affects the expression of genes important for immunity, inflammatory response, cell growth, cell death and embryonic development.

Effect of RAGE receptor in the body

Activation of NF-κB stimulates the production of cytokines (IL-1, TN-α, interferon γ) and growth factors (IGF-1, PDGF). This results in the expression of adhesive molecules, increased cell proliferation, increased vascular permeability. It also stimulates macrophage migration, endothelin production. The synthesis of collagen IV, proteoglycans and fibronectin increases . At the site of inflammation , it stimulates the formation of carboxymethyllysine (CML) in phagocytes.

Negative effects of AGEs in the organism

Complications of Diabetes mellitus

Chronic changes in diabetes are the result of hyperglycemia, which leads to increased protein glycation and subsequent oxidative and carbonyl stress. Carbonyl and oxidative stress alone leads to the formation of AGEs and ALEs.

However, this mechanism is not the only one that leads to organ damage in diabetes. For example , hyperglycemia alone increases the amount of AGEs and ALEs (non-enzymatic glycation) - a disorder of lipid metabolism. It should be noted that the development of complications in diabetes is not caused by a single mechanism. It is a complex and to some extent cascading process that is highly interconnected.

Metabolic changes

Non-enzymatic glycation - Maillard reaction.

Intracellular hyperglycemia occurs in tissues where insulin is not required (eye lens, nerve tissue, kidneys). Glucose is metabolized to sorbitol and fructose , which causes hyperosmolarity of the cells and the resulting osmotic damage to the cell . Sorbitol also damages ion pumps , leading to neuropathies and aneurysms in the retina .

Macrovascular complications

Accelerated development of atherosclerosis, which leads to coronary heart disease , coronary heart disease .

Microvascular complications

Nephropathy leads to kidney failure. Deposits are stored in the basement membrane, which leads to its thickening and charge change. Furthermore, growth factors are secreted, vascular permeability increases, densification and mesangial matrix increase. Vascular wall proteins are modified (crosslinking). Glycation and oxidation of LDL particles and collagen occurs, leading to endothelial damage.

Retinopathy
  • Non-proliferative form - microaneurysms, minor bleeding, exudates , edema .
  • Preproliferative form - avascular sections, area hemorrhages.
  • Proliferative form - formation of new blood vessels, fibrosis, vitreous hemorrhage.

Cardiovascular complications

Modification of vascular wall proteins (crosslinking). There is increased extracellular matrix production, glycation and oxidation of LDL particles, as well as endothelial damage (collagen glycation).

Other complications include arterial damage (weakening of the vessel wall, changes in vascular permeability) and atherosclerosis.

Complications of other systems

  • Nervous system - The accumulation of AGEs in pyramidal cells (neurons) is probably related to Alzheimer's disease , in general it can be said to be a neurodegenerative disease.
  • Respiratory system - Chronic lung diseases.
  • GIT - Liver cirrhosis .
  • Joints - Rheumatoid arthritis .

Therapeutic options effect of reducing the formation of AGEs

Prevention of negative effects of AGEs in the body can be prevented in general at 3 levels:

  1. Development of AGEs - Careful compensation of diabetes (diet, reduction of hyperglycemia and hyperlipidemia, reduction of oxidative stress).
  2. Chemical degradation of cross-linked proteins .
  3. AGEs-RAGE interactions - Effect on anti-RAGEAb receptor effect. Increased expression of soluble AGE receptor (sRAGE) - inhibitor of AGEs toxic effects. Its expression is increased by some agiotensin converting enzyme (ACEI) inhibitors, such as ramipril or perindopril  . Some antidiabetics block RAGE signaling (pioglitazone  , empagliflozin  ).

There are ongoing studies on the effects of AGEs and their side effects. In this context, we can include substances such as taurine, carnosine, aspirin, pyridoxamine, aminoguanidine, alpha-lipoic acid.