The effect of drugs on heart rate: Difference between revisions
Feedback

From WikiLectures

(The effect of drugs on blood rate)
 
(The effect of drugs on blood rate)
Line 4: Line 4:


__TOC__
__TOC__
'''Kardioinhibitory''' (léky snižující srdeční činnost) působí negativně chronotropně (snižováním srdeční frekvence) a inotropně (snižováním kontraktility srdečního svalu), což vede ke snižování srdečního výdeje a krevního tlaku. Tyto změny redukují činnost srdce a tím spotřebu kyslíku myokardem. Mechanizmy působení těchto léků rovněž zahrnují snížení elektrického vedení (negativně dromotropní působení).
'''Cardioinhibitors''' (drugs that reduce heart function) have a negative effect chronotropically (by reducing the heart rate) and inotropically (by reducing the contractility of the heart muscle), which leads to a reduction in cardiac output and blood pressure. These changes reduce the activity of the heart and thus the consumption of oxygen by the myocardium. The mechanisms of action of these drugs also include a reduction in electrical conduction (negative dromotropic effects).


Mechanické a metabolické účinky těchto léčiv je předurčují k léčbě [[hypertenze]], [[angina pectoris|anginy pectoris]] a [[infarkt myokardu|infarktu myokardu]]. Díky svému účinku na elektrickou aktivitu srdce jsou navíc vhodné k léčbě srdečních arytmií<ref name="Klabunde">{{Citace
The mechanical and metabolic effects of these drugs predispose them to the treatment of hypertension, angina pectoris and myocardial infarction. In addition, due to their effect on the electrical activity of the heart, they are suitable for the treatment of cardiac arrhythmias<ref name="Klabunde">{{Citace
|typ = web
|typ = web
|korporace =  
|korporace =  
Line 21: Line 21:
|citováno = 24.4.2010
|citováno = 24.4.2010
|url = http://www.cvpharmacology.com/
|url = http://www.cvpharmacology.com/
}}</ref>. Některé kardioinhibitory (zejména určité &beta;-blokátory) se používají při léčení [[srdeční selhání (interna)|selhání srdce]].
}}</ref>. Some cardioinhibitors (especially certain β-blockers) are used to treat heart failure..


==== Hypertenze ====
==== Hypertension ====
Je způsobena zvýšením srdečního výdeje nebo zvýšením systémové cévní rezistence. Kardioinhibitory snižují srdeční frekvenci a tepový objem, což vede ke [[Stanovení srdečního výdeje|snížení srdečního výdeje]] a tím k poklesu tlaku krve.
It is caused by an increase in cardiac output or an increase in systemic vascular resistance. Cardioinhibitors reduce the heart rate and heart rate, which leads to a reduction in cardiac output and thus to a decrease in blood pressure.


==== Angina pectoris a infarkt myokardu ====
==== Angina pectoris and myocardial infarction ====
Kardioinhibitory (snižováním srdeční frekvence, kontraktility a arteriálního tlaku) snižují práci srdce a jeho nároky na kyslík. Mohou tak pacientovi ulehčit od anginozních bolestí, které vznikají nejčastěji z důvodu nedostatku kyslíku při větší námaze. Význam v léčbě infarktu myokardu spočívá nejen ve zvýšení poměru dodávky a potřeby kyslíku, ale rovněž ve schopnosti inhibovat poinfarktové remodelace srdeční tkáně<ref name="Klabunde"/>.
Cardioinhibitors (by reducing heart rate, contractility and arterial pressure) reduce the heart's work and its oxygen requirements. In this way, they can relieve the patient of anginal pain, which most often arises due to lack of oxygen during increased exertion. Significance in the treatment of myocardial infarction lies not only in the increase in the ratio of oxygen supply and demand, but also in the ability to inhibit post-infarction remodeling of cardiac tissue<ref name="Klabunde"/>.


==== Srdeční arytmie ====
==== Cardiac arrhythmia ====
Kardioinhibitory mění [[pacemaker]]ovou aktivitu a vedení vzruchu srdcem, a proto jsou užitečné při léčbě [[Poruchy srdečního rytmu|arytmií]] způsobených jak abnormální automacií, tak abnormálním vedením vzruchu<ref name="Klabunde"/>.
Cardioinhibitors alter pacemaker activity and conduction control, and are therefore useful in the treatment of arrhythmias caused by both abnormal automation and abnormal conduction<ref name="Klabunde"/>.
   
   
==== Srdeční selhání ====
==== Heart Failure ====
Ačkoli se může zdát paradoxní, že by se kardioinhibitory užívaly při [[Srdeční selhání (interna)|srdečním selhání]], kdy je myokard funkčně utlumen, klinické studie prokázaly, že určité kardioinhibitory prokazatelně zlepšily srdeční funkci u určitých typů srdečního selhání<ref name="Klabunde"/>. Tento účinek může být odvozen jejich blokací nadměrných účinků sympatiku na srdce, které selhávající srdce poškozují.
Although it may seem paradoxical that cardioinhibitors are used in heart failure when the myocardium is functionally suppressed, clinical studies have shown that certain cardiohibitors have been shown to improve cardiac function in certain types of heart failure<ref name="Klabunde"/>. This effect can be deduced from their blockade of excessive sympathetic effects on the heart, which damage failing hearts.


=== Třídy léků a obecné mechanismy jejich účinku ===
=== Drug classes and general mechanisms of their action ===


Klinicky využívané kardioinhibitory můžeme rozdělit do tří skupin: beta-blokátory, blokátory kalciových kanálů a centrálně působící sympatolytika.
Clinically used cardioinhibitors can be divided into three groups: beta-blockers, calcium channel blockers and centrally acting sympatholytics.


 
==== Beta-blockers (beta-adrenergic receptor antagonists)) ====
==== Beta-blokátory (antagonisté beta-adrenergních receptorů) ====


----
----


Váží se k '''&beta;-adrenergním receptorům''' v převodním systému a v pracovním myokardu. V srdci se vyskytují oba typy: &beta;-1 i &beta;-2 adrenoreceptory. Početně a funkčně však převažují &beta;-1. Tyto receptory primárně váží [[noradrenalin]] uvolňovaný ze sympatických adrenergních nervových zakončení. Mimoto váží [[adrenalin]] a noradrenalin kolující v [[krev|krvi]]. &beta;-blokátory brání vazbě těchto ligandů na receptory tím, že s nimi kompetují o vazebné místo. Redukují účinky sympatiku (tj. jsou to sympatolytika), který normálně stimuluje chronotropii, inotropii a dromotropii. Jejich účinek dokonce roste, pokud je aktivita sympatiku zvýšena. Klinicky používané &beta;-blokátory jsou buď '''neselektivní''' (&beta;-1 či &beta;-2) blokátory nebo relativně '''selektivní''' &beta;-1-blokátory (relativní selektivita se může při vyšší dávce léku vytrácet). Některé z &beta;-blokátorů mají ještě další účinky kromě &beta;-blokace. Třetí generace &beta;-blokátorů jsou látky, které mají navíc vazodilatační účinky působením na &alpha;-adrenoreceptory cév.  
It binds to '''β-adrenergic receptors''' in the conduction system and in the working myocardium. There are both types in the heart: β-1 and β-2 adrenoreceptors. However, β-1 predominates numerically and functionally. These receptors primarily bind norepinephrine released from sympathetic adrenergic nerve endings. In addition, it weighs adrenaline and norepinephrine circulating in the blood.β-blockers prevent the binding of these ligands to receptors by competing with them for binding site. They reduce the effects of sympathetic drugs (ie, sympatholytics) that normally stimulate chronotropy, inotropy, and dromotropy. Their effect even increases when sympathetic activity is increased. Clinically used β-blockers are either '''non-selective''' (β-1 or β-2) blockers or relatively '''selective''' β-1-blockers (relative selectivity may be lost at higher drug doses). Some of the β-blockers have other effects besides β-blocking. The third generation of β-blockers are substances that have additional vasodilatory effects by acting on α-adrenoreceptors of blood vessels.  


Některé beta-blokátory po navázání na &beta;-adrenoceptor tento receptor zčásti aktivují, zatímco brání vazbě noradrenalinu. Tito tzv. '''parciální agonisté''' (parciální &beta;-blokátory) tedy poskytují určité pozadí sympatické aktivity, i když normálním či zvýšeným účinkům sympatiku brání. Mluvíme o nich jako o nositelích vlastní sympatomimetické aktivity ('''''intrinsic sympathomimetic activity, ISA'''''). Část &beta;-blokátorů je rovněž nositelem membránové stabilizační aktivity ('''MSA'''), kterou nacházíme rovněž u blokátorů sodíkových kanálů patřících mezi antiarytmika.
Some beta-blockers, upon binding to the β-adrenoceptor, partially activate this receptor while preventing noradrenaline binding. These so-called '''partial agonists''' (partial β-blockers) therefore provide a certain background for sympathetic activity, even if they prevent normal or increased sympathetic effects. We speak of them as '''''carriers of intrinsic sympathomimetic activity (ISA)'''''.Some β-blockers also carry membrane stabilization activity ('''MSA'''), which is also found in sodium channel blockers belonging to antiarrhythmics.


&beta;-adrenoceptory jsou spřaženy s '''Gs-proteiny''', které aktivují '''adenylcyklázu'''. Vzrůst cAMP aktivuje '''cAMP-dependentní proteinkinázy''' (PK-A), které fosforylují kalciové kanály, a tak způsobí zvýšený tok vápníku do buňky. Nárůst intracelulárního vápníku během akčních potenciálů vede ke zvýšenému uvolňování vápníku ze sarkoplasmatického retikula, což v konečném důsledku zvyšuje inotropii (kontraktilitu). Gs-proteinová aktivace vede rovněž ke zvýšení frekvence srdečních stahů (chronotropie). Proteinkinázy PK-A rovněž fosforylují části sarkoplasmatického retikula, což vede ke zvýšenému uvolňování kalcia přes '''ryanodinové receptory''' (ryanodin-senzitivní kalciové kanály) spojené se sarkoplazmatickým retikulem. To poskytuje více vápníku pro jeho vazbu na troponin-C, což zvyšuje inotropii. PK-A mohou dále fosforylovat lehké řetězce myozinu, což může přispívat k pozitivnímu inotropnímu efektu stimulace &beta;-adrenoceptorů.
β-adrenoceptors are coupled to Gs-proteins that activate adenyl cyclase. The increase in cAMP activates cAMP-dependent protein kinases (PK-A), which phosphorylate calcium channels and thus cause increased calcium flux into the cell. An increase in intracellular calcium during action potentials leads to increased calcium release from the sarcoplasmic reticulum, which ultimately increases inotropy (contractility). Gs-protein activation also leads to an increase in the frequency of heartbeats (chronotropy). PK-A protein kinases also phosphorylate portions of the sarcoplasmic reticulum, leading to increased calcium release via ryanodine receptors (ryanodine-sensitive calcium channels) associated with the sarcoplasmic reticulum. This provides more calcium for its binding to troponin-C, which increases inotropy. PK-A can further phosphorylate myosin light chains, which may contribute to the positive inotropic effect of β-adrenoceptor stimulation. They are used to treat hypertension, angina pectoris, myocardial infarction and arrhythmias<ref name="Klabunde"/>.
Používají se k léčbě hypertenze, anginy pectoris, infarktu myokardu a arytmií<ref name="Klabunde"/>.


===== Hypertenze =====
===== Hypertension =====
&beta;-blokátory snižují arteriální krevní tlak snižováním srdečního výdeje. Mohou tak představovat efektivní léčbu hypertenze, obzvláště jsou-li užívány společně s diuretiky<ref name="Klabunde"/>. Hypertenze je u některých pacientů způsobena emočním stresem, který aktivuje sympatikus, jindy zase například feochromocytomem, který zvyšuje hladinu cirkulujících katecholaminů. I v těchto případech je léčba &beta;-blokátory úspěšná. &beta;-blokátory navíc inhibují aktivitu renin-angiotenzin-aldosteronového systému. Akutní léčba &beta;-blokátory není příliš efektivní při snižování krevního tlaku vzhledem ke kompenzačnímu vzrůstu cévní rezistence v systémovém řečišti.
β-blockers reduce arterial blood pressure by reducing cardiac output. They can thus be an effective treatment for hypertension, especially when used in combination with diuretics [1]. Hypertension in some patients is caused by emotional stress, which activates the sympathetic nervous system, while in other cases, for example, pheochromocytoma, which increases the level of circulating catecholamines. Even in these cases, treatment with β-blockers is successful. In addition, β-blockers inhibit the activity of the renin-angiotensin-aldosterone system. Acute treatment with β-blockers is not very effective in lowering blood pressure due to the compensatory increase in vascular resistance in the systemic circulation. The hypotensive effect of the substances in this group is detectable during the first days of treatment, but they do not reach full effect until after 2-3 weeks of administration<ref name="Hynie">{{Citace
Hypotenzivní účinek látek této skupiny je zjistitelný již během prvních dnů léčby, plného účinku však dosahují až po 2–3 týdnech podávání<ref name="Hynie">{{Citace
|typ = kniha
|typ = kniha
|korporace =  
|korporace =  
Line 75: Line 72:
   
   


===== Angina pectoris a infarkt myokardu =====
===== Angina pectoris and myocardial infarction =====
Antianginální efekt &beta;-blokátorů je připisován jejich tlumivému účinku na srdeční frekvenci, kontraktilitu a jejich hypotenzním účinkům. &beta;-blokátory snižují srdeční práci, a tím i potřebu saturace myokardu kyslíkem (viz výše).
The antianginal effect of β-blockers is attributed to their depressant effect on heart rate, contractility and their hypotensive effects. β-blockers reduce cardiac work and thus the need for myocardial oxygen saturation (see above).


===== Srdeční arytmie =====
===== Cardiac arrhythmia =====
Antiarytmické vlastnosti &beta;-blokátorů (antiarytmika II. třída) souvisejí s jejich schopností inhibovat vliv sympatiku na srdeční aktivitu. Sympatikus zvyšuje frekvenci vzniku vzruchů v sinuatriálním uzlu, což zvyšuje sinusový rytmus. Dále zvyšuje rychlost převodu vzruchu na myokard komor a stimuluje vznik ektopických vzruchů. Tyto účinky sympatiku jsou zprostředkovány hlavně přes &beta;-1-adrenoceptory. Proto mohou &beta;-blokátory snižovat tyto účinky, a tak snižovat sinusový rytmus, rychlost síňokomorového převodu (což může zablokovat mechanizmy reentry) a inhibovat nenormální pacemakerovou aktivitu. &beta;-blokátory rovněž postihují non-pacemakerové akční potenciály zvyšováním délky trvání akčního potenciálu a relativní refrakterní periody. Tento účinek může hrát hlavní úlohu v zabránění arytmiím způsobených reentry fenoménem<ref name="Klabunde"/>.
The antiarrhythmic properties of β-blockers (class II antiarrhythmics) are related to their ability to inhibit the effect of sympathetic nervous activity. The sympathetic nervous system increases the frequency of excitations in the sinuatrial node, which increases the sinus rhythm. It also increases the rate of transmission of excitation to the ventricular myocardium and stimulates the formation of ectopic excitations. These sympathetic effects are mediated mainly through β-1-adrenoceptors. Therefore, β-blockers may reduce these effects, thus reducing sinus rhythm, atrial conduction velocity (which may block reentry mechanisms), and inhibit abnormal pacemaker activity. β-blockers also affect non-pacemaker action potentials by increasing action potential duration and relative refractory periods. This effect may play a major role in preventing arrhythmias caused by the reentry phenomenon<ref name="Klabunde"/>.


===== Srdeční selhání =====
===== Heart Failure =====
Většina srdečně selhávajících pacientů trpí systolickou dysfunkcí, tzn. je omezena kontratilní funkce srdce (tj. ztráta inotropie). Ačkoli není zcela jasné, jakým mechanismem &beta;-blokátory při srdečním selháním pomáhají, je jisté, že zlepšují srdeční funkci a snižují úmrtnost<ref name="Klabunde"/>.
Most heart failure patients suffer from systolic dysfunction, ie. the contraceptive function of the heart is limited (ie loss of inotropy). Although it is not entirely clear what mechanism β-blockers help with heart failure, it is certain that they improve heart function and reduce mortality<ref name="Klabunde"/>.




{| class="wikitable"
{| class="wikitable"
|+ '''''Třídy &beta;-blokátorů a specifických léků, klinické použití.'''''
|+ '''''Classes of β-blockers and specific drugs, clinical use.'''''
! Třída/Lék
! Class / Medicine
! HTN
! HTN
! Angina
! Angina
Line 93: Line 90:
! IM
! IM
! CHF
! CHF
! Komentář
! Comment
|-
|-
| bgcolor = lightblue | Neselektivní &beta;-1/2
| bgcolor = lightblue | Non-selective β-1/2
|  
|  
|
|
Line 103: Line 100:
|  
|  
|-
|-
| karteolol
| carteolol
| X
| X
|
|
Line 109: Line 106:
|
|
|
|
| ISA; dlouze působící; používán i u glaukomu
| ISA; long acting; also used in glaucoma
|-
|-
| karvedilol
| carvedilol
| X
| X
|  
|  
Line 117: Line 114:
|
|
| X
| X
| &alpha;-blokující účinek
| &alpha; α-blocking effect
|-
|-
| labetalol
| labetalol
Line 125: Line 122:
|
|
|
|
| ISA, &alpha;-blokující účinek
| ISA, &alpha; α-blocking effect
|-
|-
| nadolol
| nadolol
Line 133: Line 130:
| X
| X
|  
|  
| dlouze působící
| long acting
|-
|-
| penbutolol
| penbutolol
Line 157: Line 154:
| X
| X
|
|
| MSA; typický &beta;-blokátor
| MSA; a typical β-blocker
|-
|-
| sotalol
| sotalol
Line 165: Line 162:
|
|
|
|
| ještě další účinky
| still has other effectsy
|-
|-
| timolol
| timolol
Line 173: Line 170:
| X
| X
|
|
| ještě další účinky
| still has other effects
|-
|-
| bgcolor = lightblue | &beta;-1-selektivní
| bgcolor = lightblue | β-1-selective
|  
|  
|  
|  
Line 221: Line 218:
|
|
|
|
| obzvláště krátký účinek
| particularly short effec
|-
|-
| metoprolol
| metoprolol
Line 233: Line 230:
|}
|}


''Zkratky: HTN – hypertenze, Arrhy – arytmie, IM – infarkt myokardu, CHF – městnavé srdeční selhání, ISA – vlastní sympatomimetická aktivita''
''Abbreviations: HTN - hypertension, Arrhy - arrhythmia, IM - myocardial infarction, CHF - congestive heart failure, ISA - own sympathomimetic activity''


==== Blokátory kalciových kanálů (calcium-channel blockers, CCB) ====
==== Calcium channel blockers (CCB) ====


----
----


Váží se na '''kalciové kanály typu L '''(pomalé vápníkové kanály<ref name="Hynie"/>) v membráně kardiomyocytů a nodální tkáni. Tyto kanály jsou zodpovědné za regulaci influxu vápníku do buňky myokardu, což stimuluje její kontrakci. Ve tkáni srdečních uzlů (SA a AV uzel) mají tyto kanály roli v pacemakerových proudech a počáteční fázi vzniku akčního potenciálu. Blokací vstupu vápníku do buňky působí tedy tato léčiva negativně inotropně (snižují sílu srdečního stahu), negativně chronotropně (snižují srdeční frekvenci) a snižují rychlost převodu vzruchu převodním systémem srdečním (negativně dromotropně působí zejména na AV uzel). V hladké svalovině cév vyvolávají relaxaci a pokles periferního odporu s poklesem tlaku krve<ref name="Hynie"/>. Užívají se při léčbě hypertenze, anginy pectoris a [[Poruchy srdečního rytmu|arytmií]].
It binds to '''L-type calcium channels '''(slow calcium channels<ref name="Hynie"/>) in the cardiomyocyte membrane and nodal tissue. These channels are responsible for regulating calcium influx into the myocardial cell, which stimulates its contraction. In cardiac node tissue (SA and AV node), these channels play a role in pacemaker currents and the initial phase of action potential formation. Thus, by blocking the entry of calcium into the cell, these drugs act negatively inotropically (reduce the strength of the heartbeat), negatively chronotropically (reduce the heart rate) and reduce the rate of excitation transmission by the cardiac conduction system (negatively dromotropically affects the AV node in particular). In vascular smooth muscle, they induce relaxation and a decrease in peripheral resistance with a decrease in blood pressure<ref name="Hynie"/>. They are used to treat hypertension, angina and arrhythmias.


===== Hypertenze =====
===== Hypertension =====
Tím, že způsobují relaxaci hladké svaloviny ve stěně cév, CCB snižují systémovou cévní rezistenci, čímž snižují krevní tlak. Tyto léky účinkují zejména na arteriální rezistentní cévy, s minimálním efektem na žilní kapacitní cévy<ref name="Klabunde"/>.
By causing smooth muscle relaxation in the blood vessel wall, CCBs reduce systemic vascular resistance, thereby lowering blood pressure. These drugs act mainly on arterial resistant vessels, with minimal effect on venous capacity vessels<ref name="Klabunde"/>.


===== Angina pectoris =====
===== Angina pectoris =====
Protianginozní účinky CCB jsou odvozeny od jejich vazodilatačních účinků a účinků potlačujících srdeční akci. Systémová vazodilatace snižuje arteriální tlak, což vede ke snížení komorového afterloadu, a tím se snižuje potřeba kyslíku. Pro srdce selektivnější CCB (verapamil a diltiazem) snižují frekvenci srdečních stahů a kontraktilitu myokardu, což z nich dělá (na základě snížení kyslíkových požadavků myokardu) výborná protiangiozní léčiva<ref name="Klabunde"/>. CCB mohou rovněž způsobovat dilataci koronárních arterií, a tak zabránit jejich spazmu (Prinzmetalova angina pectoris).
The antianginal effects of CCBs are derived from their vasodilatory and cardiac suppressive effects. Systemic vasodilation reduces arterial pressure, which leads to a reduction in ventricular afterload, thereby reducing oxygen demand. For the heart, more selective CCBs (verapamil and diltiazem) reduce the frequency of heartbeats and myocardial contractility, making them (based on the reduction of myocardial oxygen requirements) excellent anti-angiogenic drugs<ref name="Klabunde"/>. CCBs can also cause coronary arteries to dilate, thus preventing their spasm (Prinzmetal's angina pectoris).


===== Srdeční arytmie =====
===== Cardiac arrhythmia =====
Antiarytmická skupina CCB (IV. třída antiarytmik) působí hlavně snižováním rychlosti vedení vzruchu a prodloužením repolarizace, zejména v atrioventrikulárním uzlu. Opožděná akce AV uzlu pomáhá zabránit reentry mechanismu, který může být příčinou supraventrikulární tachykardie.
The antiarrhythmic group CCB (class IV antiarrhythmics) acts mainly by reducing the conduction velocity and prolonging repolarization, especially in the atrioventricular node. Delayed AV node action helps prevent reentry mechanism, which may cause supraventricular tachycardia.


===== Třídy blokátorů kalciového kanálu =====
===== Calcium channel blocker classes =====
Rozlišujeme tři třídy CCB. Liší se nejen svou základní chemickou strukturou, ale rovněž svojí relativní selektivitou k srdečním nebo cévním kalciovým kanálům. Většina CCB působících na hladkou svalovinu cév jsou '''dihydropyridiny'''. Používají se tedy zejména k redukci cévní rezistence a tlaku krve, tj. k léčbě hypertenze. Nepoužívají se k léčení anginy pectoris, kvůli svému silnému vazodilatačnímu a tlak snižujícímu účinku, který může vést k reflexní srdeční stimulaci (tachykardie a zvýšená inotropie), která vede k dramatickému zvýšení spotřeby kyslíku myokardem. Dihydropyrinidiny zahrnují následující specifické léky:
We distinguish three classes of CCB. They differ not only in their basic chemical structure, but also in their relative selectivity to cardiac or vascular calcium channels. Most CCBs acting on vascular smooth muscle are '''dihydropyridines.'''. They are therefore mainly used to reduce vascular resistance and blood pressure, ie to treat hypertension. They are not used to treat angina pectoris, due to its strong vasodilatory and pressure-lowering effects, which can lead to reflex cardiac pacing (tachycardia and increased inotropy), which leads to a dramatic increase in myocardial oxygen consumption. Dihydropyrinidins include the following specific drugs:
* '''''amlodipin''''';
* '''''amlodipine''''';
* '''''felodipin''''';
* '''''felodipine''''';
* '''''isradipin''''';
* '''''isradipine''''';
* '''''nikardipin''''';
* '''''nikardipine''''';
* '''''nifedipin''''';
* '''''nifedipine''''';
* '''''nimodipin''''';
* '''''nimodipine''''';
* '''''nitrendipin'''''.
* '''''nitrendipine'''''.


''(pozn.: některé novější látky jako např. amlodipin či isradipin jsou nazývány rovněž jako dihydropyridiny druhé generace<ref name="Hynie"/>.)''
''(Note: some newer substances such as amlodipine or isradipine are also called second-generation dihydropyridines<ref name="Hynie"/>.)''


'''Non-dihydropyridiny''' zahrnují další dvě třídy CCB. '''''Verapamil''''' (fenylalkylaminová třída) je relativně selektivní pro myokard a je méně účinný jako systémový vazodilatátor. Tento lék je velmi významný při léčbě anginy pectoris a arytmií. '''''Diltiazem''''' (benzotiazepinová třída) představuje mezistupeň mezi verapamilem a dihydropyridiny z hlediska selektivity pro kalciové kanály cév. Snižuje srdeční rytmus a působí vazodilatačně. Těmito mechanismy je schopen snížit krevní tlak bez toho, aby způsobil stejný stupeň reflexní kardiostimulace jako dihydropyridiny<ref name="Klabunde"/>.
'''Non-dihydropyridines''' include two other classes of CCBs. '''''Verapamil'''''(phenylalkylamine class) is relatively selective for the myocardium and is less effective as a systemic vasodilator. This drug is very important in the treatment of angina and arrhythmias. '''''Diltiazem''''' (benzothiazepine class) is an intermediate step between verapamil and dihydropyridines in terms of selectivity for vascular calcium channels. It lowers the heart rhythm and has a vasodilating effect. Through these mechanisms, it is able to lower blood pressure without causing the same degree of reflex pacing as dihydropyridines<ref name="Klabunde"/>.


===== Vedlejší účinky a kontraindikace =====
===== Side effects and contraindications =====
Dihydropyrinidinové CCB mohou způsobovat překrvení, [[Bolest hlavy|bolesti hlavy]], nadměrnou [[Hypotenze|hypotenzi]], [[edém]]y a reflexní tachykardii. Z hlediska aktivace sympatických reflexů a postrádání přímých účinků na srdeční sval, nejsou příliš vhodné k léčení anginy pectoris<ref name="Klabunde"/>. Dlouho působící dihydropyridiny se ukázaly býti bezpečnějšími antihypertenzivy vzhledem ke sníženým reflexním odpovědím. Srdečně-selektivní non-dihydropyridinové CCB mohou způsobovat nadměrnou bradykardii, postižení elektrického převodu (blokace AV uzlu) a sníženou kontraktilitu. Proto by je neměli užívat pacienti s chronickou bradykardií, poruchami srdečního převodu nebo se srdečním selháváním. CCB (hlavně non-dihydropyridinové) by rovněž neměli být předepisovány pacientům, kteří jsou léčeni &beta;-blokátory<ref name="Klabunde"/>.
Dihydropyrinidine CCBs can cause congestion, headache, excessive hypotension, edema, and reflex tachycardia. In terms of activation of sympathetic reflexes and lack of direct effects on the heart muscle, they are not very suitable for the treatment of angina pectoris<ref name="Klabunde"/>.Long-acting dihydropyridines have been shown to be safer antihypertensives due to reduced reflex responses. Cardiac-selective non-dihydropyridine CCBs can cause excessive bradycardia, electrical transmission impairment (AV node blockage) and decreased contractility. Therefore, they should not be used in patients with chronic bradycardia, cardiac conduction defects or heart failure. CCBs (mainly non-dihydropyridine) should also not be prescribed to patients treated with β-blockers<ref name="Klabunde"/>.




==== Centrálně působící sympatolytika ====
==== Centrally acting sympatholytics ====


----
----


Sympatikus má hlavní úlohu v regulaci arteriálního tlaku krve. Zvyšuje srdeční frekvenci (působí pozitivně chronotropně), kontraktilitu myokardu (pozitivně inotropně) a rychlost vedení vzruchu v srdci (pozitivně dromotropní vliv). Adrenergní vlákna sympatiku, která inervují srdce a cévy jsou postgangliová eferentní nervová vlákna. Buněčná těla těchto nervů se nacházejí v prevertebrálních a paravertebrálních sympatických gangliích. Pregangliová vlákna sympatiku, která vedou ke gangliím z míchy, mají původ v prodloužené míše mozkového kmene. Nacházejí se zde sympatické excitační neurony, které mají významnou bazální aktivitu, která uděluje srdci určitý tonus za bazálních podmínek. Tyto [[neuron]]y dostávají signály od jiných, vagových neuronů z nucleus tractus solitarii (dostává signály z periferních baroreceptorů a chemoreceptorů) a od neuronů v [[hypotalamus|hypotalamu]]. Společně tento neuronový systém reguluje sympatický (a parasympatický) přenos k srdci a cévám.
The sympathetic nervous system plays a major role in the regulation of arterial blood pressure. It increases the heart rate (has a positive chronotropic effect), myocardial contractility (positively inotropically) and the conduction velocity in the heart (positively dromotropic effect). The adrenergic sympathetic fibers that innervate the heart and blood vessels are postganglionic efferent nerve fibers. The cell bodies of these nerves are found in the prevertebral and paravertebral sympathetic ganglia. The preganglionic sympathetic fibers that lead to the spinal ganglia originate in the elongated spinal cord. There are sympathetic excitatory neurons that have significant basal activity, which gives the heart a certain tone under basal conditions. These neurons receive signals from other vagal neurons from the nucleus tractus solitarii (it receives signals from peripheral baroreceptors and chemoreceptors) and from neurons in the hypothalamus. Together, this neural system regulates sympathetic (and parasympathetic) transmission to the heart and blood vessels. Sympatholytic drugs can block the sympathetic adrenergic system at three levels. The first, '''peripheral sympatholytics''' - α and β-adrenoceptor antagonists - block the effect of norepinephrine on the effector organ (heart or blood vessels).
Sympatolytická léčiva mohou blokovat sympatický adrenergní systém na třech úrovních. První, '''periferní sympatolytika''' – antagonisté &alpha; a &beta;-adrenoceptorů – blokují vliv noradrenalinu na efektorový orgán (srdce či krevní cévy).
The others are so called '''ganglion blockers''', which block the transmission of impulses in the sympathetic ganglia. The third group consists of drugs that block sympathetic activity within the brain. We call them '''centrally acting sympatholytics'''.
Druzí jsou tzv. '''blokátoři ganglií''', kteří blokují přenos impulsu v sympatických gangliích.
Třetí skupinu pak tvoří léky, které blokují sympatickou aktivitu uvnitř [[mozek|mozku]]. Nazýváme je '''centrálně působící sympatolytika'''.


Centrálně působící sympatolytika blokují sympatickou aktivitu vazbou a aktivací α2-adrenoceptorů v membráně buněk prodloužené míchy, které regulují srdeční činnost. Tím snižují účinek sympatiku na srdce a dochází k poklesu srdečního výdeje. Tato léčiva se používají jen k léčbě hypertenze<ref name="Klabunde"/>.
Centrally acting sympatholytics block sympathetic activity by binding and activating α2-adrenoceptors in the membrane of elongated spinal cord cells, which regulate cardiac activity. This reduces the effect of sympathetic nervous system and reduces cardiac output. These drugs are only used to treat hypertension<ref name="Klabunde"/>.


===== Terapeutické indikace =====
===== Therapeutic indications =====
Centrálně působící agonisté α-2-adrenoceptorů se používají k léčbě hypertenze, avšak nepoužívají se jako léky první volby vzhledem k jejich vedlejším účinkům při působení v mozku. Obvykle jsou předepisovány v kombinaci s diuretiky, aby se zabránilo hromadění tekutin, které by zvyšovalo objem krve, a tím snižovalo účinek léku. Tato léčiva jsou vhodná u pacientů s onemocněním [[ledviny|ledvin]], jelikož neovlivňují [[Funkční vyšetření ledvin|renální funkce]]<ref name="Klabunde"/>.
Centrally acting α-2-adrenoceptor agonists are used to treat hypertension, but are not used as first-line drugs due to their side effects in the brain. They are usually prescribed in combination with diuretics to prevent the accumulation of fluids, which would increase blood volume and thus reduce the effect of the drug. These drugs are useful in patients with kidney disease because they do not affect renal function<ref name="Klabunde"/>.
   
   
===== Specifická léčiva =====
===== Specific drugs =====
V klinické praxi se používá několik odlišných centrálně působících antihypertenziv:
Several different centrally acting antihypertensives are used in clinical practice:
* '''''klonidin''''';
* '''''clonidine''''';
* '''''guanabenz''''';
* '''''guanabenz''''';
* '''''guanfacin''''';
* '''''guanfacine''''';
* '''''α-methyldopa'''''.
* '''''α-methyldopa'''''.
Klonidin, guanabenz a guanfacin jsou si strukturálně podobná léčiva a mají totožné antihypertenzivní účinky. α-methyldopa je strukturální analog dopy a musí být nejprve konvertována na α-methynoradrenalin, který teprve funguje jako agonista α-2-adrenoceptorů v prodloužené míše a snižuje dráždění sympatiku. α-methyldopa je lékem volby při léčbě hypertenze v těhotenství, kdy nebyla prokázána její [[Teratogeny|teratogenita]]<ref name="Klabunde"/>.
Clonidine, guanabenz and guanfacine are structurally similar drugs and have identical antihypertensive effects. α-methyldopa is a structural analogue of dopa and must first be converted to α-methynoradrenaline, which only acts as an α-2-adrenoceptor agonist in the spinal cord and reduces sympathetic irritation. α-methyldopa is the drug of choice in the treatment of hypertension in pregnancy when its teratogenicity has not been established<ref name="Klabunde"/>.
 
===== Side effects and contraindications =====
Side effects of centrally acting sympatholytics include sedation, xerostomia, bradycardia, orthostatic hypotension, impotence, and nausea. Swelling may occur during long-term therapy.
 
'''Cardiotonics''' Cardiotonics (pacemakers) potentiate heart function by increasing heart rate (chronotropy) and myocardial contractility (inotropy), which increases cardiac output and arterial pressure. Many of them also have a positive dromotropic and lusitropic effect. Some of these drugs cause systemic vasodilation, while others have vasoconstrictive effects. The effects of these drugs on the heart muscle predispose them to use in heart failure, cardiogenic shock and hypotension<ref name="Klabunde">{{Citace
|typ = web
|korporace =
|příjmení1 = Klabunde E.
|jméno1 = Richard
|příjmení2 =
|jméno2 =
|příjmení3 =
|jméno3 =
|kolektiv = ne
|název = Cardiovascular Pharmacology Concepts
|rok = 2005
|datum_revize = 2009
|citováno = 24.4.2010
|url = http://www.cvpharmacology.com/
}}</ref>.
In the treatment of heart failure, cardiotonics today prefer procedures that reduce the demands on myocardial function - ie reduce afterload or preload, or both (diuretics, organic nitrates, calcium channel blockers, ACE inhibitors).<ref name="Hynie">{{Citace
|typ = kniha
|korporace =
|příjmení1 = Hynie
|jméno1 = Sixtus
|příjmení2 =
|jméno2 =
|příjmení3 =
|jméno3 =
|kolektiv =
|titul = Farmakologie v kostce
|vydání = 2
|místo = Praha
|vydavatel = Triton
|rok = 2001
|strany =
|edice =
|svazek =
|isbn = 80-7254-181-1
}}</ref>
 
=== Heart failure and cardiogenic shock ===
The main cause of heart failure and hypotension caused by acute heart failure (cardiogenic shock) is loss of myocardial contractility, which leads to reduced organ perfusion and hypotension. Cardiac function can be improved by reducing afterload, increasing preload (increased fluid volume) and increasing cardiac contraction. Cardiotonics work by this mechanism. Sympathomimetics or phosphodiesterase inhibitors are used for short-term therapy and may be harmful if used for a long time<ref name="Klabunde"/>. In contrast, cardiac glycosides (digitalis and others) are safe and effective in the long-term treatment of heart failure<ref name="Klabunde"/>.
 
=== Circulatory shock ===
It is a form of shock caused by hypovolemia (for example in bleeding conditions) or vasodilation during infection (septic shock). Cardiotonics, especially sympathomimetics such as beta-agonists, are used to improve (ie increase) blood pressure. They are often used in conjunction with infusions and vasoconstrictor drugs.
 
=== Drug classes and general mechanisms of their action ===
Cardiotonics can be divided into four basic classes: beta-adrenoceptor agonists (beta-agonists), cardiac glycosides (digitalis and others), phosphodiesterase inhibitors and calcium sensitisers.
 
==== Beta-agonists ====
 
----
 
These are sympathomimetics that bind to cardiac β-adrenoreceptors. Activation of β-1 and β-2 adrenergic receptors leads to an increase in heart rate and contractility, which increases cardiac output. Their activation also has a positive dromo- and lusitropic effect. These drugs are indicated for both acute and refractory heart failure and circulatory shock. Β-Adrenoceptor agonists bind to β-receptors in the heart and smooth muscle. They also have effects in tissues other than the heart, especially in the smooth muscle of the bronchi (relaxation), liver (stimulating glycogenolysis) and kidneys (stimulating renin release). They therefore cause cardiac pacing (increased heart rate, contractility, rate of transfer, relaxation) and systemic vasodilation. An increase in arterial pressure may occur, but not necessarily, as a decrease in vascular resistance interferes with an increase in cardiac output. Thus, the final effect on blood pressure depends on the relative effect on cardiac or vascular receptors<ref name="Klabunde"/>. β-agonists cause β-receptor down-regulation, which limits their use to short-term. As they are catecholamines (and have low bioavailability), they must be administered by intravenous infusion. <ref name="Klabunde"/>.
The principle of operation of β-adrenergic receptors - see above.
 
===== Specific drugs and their therapeutic use =====
The table shows several different β-agonists that are used clinically to treat heart failure and circulatory shock. These are either natural catecholamines or their analogues. Almost all have a certain degree of α-agonist activity. For some of these drugs, receptor selectivity is highly dose dependent.
 
{| class="wikitable"
|+ β-agonists
! Drug
! Receptor selectivity
! Clinical use
! Comment
|-
| '''[[Adrenalin]]'''
| β-1 = β-2> α-1 = α-2
| Anaphylactic shock; cardiogenic shock; cardiac arrest
| Low doses cause cardiac pacing and vasodilation. It has a vasoconstrictive effect at high doses.
|-
| '''[[Noradrenaline]]'''
| β-1 = α-1> β-2 = α-2
| Severe hypotension; septic shock
| Reflex bradycardia masks direct stimulatory effects on the SA node.
|-
| '''[[Dopamine]]'''
| β-1 = β-2> α-1
| Acute heart failure, cardiogenic shock and acute renal failure
| Biosynthetic precursor of noradrenaline, stimulates its release.
At low doses, it stimulates the heart and reduces systemic vascular resistance.
It has a vasodilating effect at high concentrations.
|-
| '''Dobutamine'''
| β-1> β-2> α-1
| Acute heart failure; refractory heart failure
| The net effect is cardiac pacing with weak vasodilation.
|-
| '''Isoproterenol'''
| β-1 = β-2
| Bradycardia and AV block.
| The net effect is cardiac pacing and vasodilation with little pressure change.
|-
|}
 
===== Side effects and contraindications =====
The main side effect of β-agonists is cardiac arrhythmias. Because they increase myocardial oxygen demand, they can accelerate the development of angina pectoris in patients with coronary artery disease. They can also cause headaches and tremors<ref name="Klabunde"/>.
 
==== Cardiac glycosides (digitalis) ====
 
----
 
They have been used for more than 200 years to treat heart failure.They represent a family of compounds derived from the plant Digitalis purpurea (foxglove). These drugs inhibit Na + / K + ATPase in cardiac sarcolemma, leading to an increase in intracellular calcium through the Na + / Ca 2+ -exchange system. The increase in intracellular calcium subsequently stimulates the release of additional calcium from the sarcoplasmic reticulum, its binding to troponin C, which increases contractility.
 
Due to the long half-life of digitalis, this fact should be considered when dosing. It should be administered for several days to reach its therapeutic plasma level (0.5-1.5 ng / ml<ref name="Klabunde"/>). Digitalis has a relatively narrow therapeutic window. Plasma concentrations higher than 2.0 ng / ml can be toxic<ref name="Klabunde"/>. Digitalis toxicity is manifested by (sometimes life-threatening) cardiac arrhythmias. Digibind (immune mechanism) or potassium supply are used to reduce digitalis levels (especially if toxicity is associated with hypokalaemia).
 
Therapeutic use:
 
===== Heart Failure =====
Digitalis compounds have cardiotonic effects and are used in heart failure. Although new and more effective drugs are already available, digitalis is still widely used. Clinical studies in patients with heart failure have shown that digoxin, when used in combination with diuretics and vasodilators, increases cardiac output and ejection fraction and reduces filling and capillary wedge pressures<ref name="Klabunde"/>. This reduces congestion in the lungs and the risk of edema. Heart rate changes slightly. These effects are expected with a drug that increases inotropy.
 
===== Atrial fibrillation and flutter =====
Atrial fibrillation and atrial flutter lead to an accelerated ventricular rate that can affect their filling (reducing their filling time). Digoxin and other drugs in this group are useful in reducing the ventricular rate, which was initiated by the increased rate of atrial contractions. The mechanism of this beneficial action of digoxin is its parasympathomimetic effect. Activation of the vagus can reduce the rate of conduction through the atrioventricular node to the point that some impulses are blocked. A smaller number of pulses is then fed to the chambers and the frequency of the chamber contractions decreases. In addition, digoxin increases the relative refractory period in the AV node.
 
{| class="wikitable"
|+ Specific drugs from the group of cardiac glycosides
! Drug
! Oral absorption
! Half-life (hours)
! Elimination
|-
| '''Digoxin'''
| 75 %
| 40
| kidneys
|-
| '''Digitoxin'''     
| >90 %
| 160
| liver
|-
| '''Oubain'''
| 0 %
| 20
| kidneys
|-
|}
''Note: Oubain is no longer used today.'' <ref name="Hynie"/>
 
===== Side effects and contraindications =====
The most significant side effect of digitalis is cardiac arrhythmias, especially atrial tachycardia and atrioventricular block. The drug is contraindicated in patients with hypokalaemia, AV block or Wolff-Parkinson-White syndrome. Impaired renal function leads to increased plasma concentrations of digitoxin as it is eliminated by the kidneys.
 
==== Phosphodiesterase inhibitors ====
 
----
 
These are drugs that inhibit the enzyme ('''cAMP-dependent phosphodiesterase, PDE''') responsible for reducing cAMP. This leads to an increase in cAMP levels, which has a positive inotropic and chronotropic effect in the heart. cAMP is the second messenger in the pathway initiated by the binding of catecholamines to beta1-adrenergic receptors coupled to Gs-proteins. This is followed by activation of the adenyl cyclase and the formation of cAMP. cAMP (reaction with other intracellular messengers) increases contractility, heart rate and conduction velocity.
 
These drugs are used to treat acute and refractory heart failure, but not chronic heart failure. The drugs used target cAMP-dependent phosphodiesterase (PDE3) isoform 3 <ref name="Klabunde"/>.
 
===== Therapeutic indication =====
The pacing and vasodilatory properties of PDE3 inhibitors predispose them to the treatment of heart failure. Artery dilation reduces the afterload of a failing ventricle and leads to an increase in ejection fraction and organ perfusion. The reduction in afterload leads to a secondary decrease in preload, which increases the mechanical efficiency of the dilated heart and reduces the oxygen requirements of the failing myocardium. The pacing effect of these drugs increases inotropy, which leads to an increase in heart rate and ejection fraction. However, tachycardia is also the result, so drugs are dosed to minimize the positive chronotropic effect. The baroreceptor reflex, which appears in response to hypotension, may also contribute to tachycadia. Clinical trials have shown that long-term therapy with PDE3 inhibitors increases the mortality of heart failure patients. These drugs are very useful in the treatment of acute decompensated heart failure<ref name="Klabunde"/>.They are always used together with other drugs such as diuretics, ACE inhibitors, β-blockers or digitalis.
 
===== Specific drugs =====
PDE3 inhibitors are '''milrinone''' and '''amrinone''' (possibly emoximone and piroximone<ref name="Hynie"/>). ((PDE5 inhibitors are used to treat erectile dysfunction).
 
===== Side effects and contraindications of PDE3 inhibitors =====
The most common and at the same time most serious side effect of PDE3 inhibitors are ventricular arrhythmias, some of which can reach life-threatening proportions. Some patients may experience headaches and low blood pressure<ref name="Klabunde"/>.
 
 
==== Calcium sensitizers ====
 
----
 
They represent the mostpacemaker class. These drugs increase the sensitivity of troponin-C to calcium, so more calcium binds to it, which increases the contractility of the heart. These drugs are currently undergoing clinical trials for possible use in heart failure<ref name="Klabunde"/>.These include, for example, some phosphodiesterase III inhibitors (sulmazol, imobendan, levosimendal)<ref name="Hynie"/>.
 
 
<noinclude>
== Odkazy ==
=== Externí odkazy ===
* [[wikipedia:cs:Kardiotonika|Kardiotonika (česká wikipedie)]]
=== Použitá literatura ===
<references/>
</noinclude>
 
>'''Antiarrhythmics''' (also antidysrhythmics) are drugs used to treat heart rhythm disorders, and in some cases preventively. They affect cardiac contractility and hemodynamics<ref name="Hynie">{{Citace
|typ = kniha
|korporace =
|příjmení1 = Hynie
|jméno1 = Sixtus
|kolektiv = ne
|titul = Farmakologie v kostce
|vydání = 2
|místo = Praha
|vydavatel = Triton
|rok = 2001
|strany = 248 – 252
|edice =
|svazek =
|isbn = 80-7254-181-1
}}</ref>.
 
Arrhythmia pharmacotherapy depends on the type of arrhythmia, its duration, severity, and the condition of the heart muscle. Arrhythmias are divided into tachyarrhythmias and bradyarrhythmias.
 
The mechanisms of tachyarrhythmias may be increased irritability, increased automaticity, or reentry. Treatment - reduction of excitability and automaticity, treatment of ischemia is based on the diagnosis of the mechanism of arrhythmia.<ref name="Bultas">BULTAS, Jan. Kurz ''Farmakoterapie kardiovaskulárních chorob''. 3. LF UK, 2010<!--předmět na 3. LF, kód CVOL7937 nebo CCOC7937--></ref>
 
===Therapeutic use===
The main goal of antiarrhythmic treatment is to '''restore normal heart rhythm and transmission'''; possibly at least to prevent more severe to fatal arrhythmias. They reduce or increase the speed of conduction, change the excitability of the heart cells and suppress abnormal automation.
 
All antiarrhythmics alter membrane conductivity by the following mechanisms:
 
*'''By blocking fast sodium channels'''. These channels determine the rate of membrane depolarization during the action potential, which can help eliminate tachyarrhythmias caused by the reentry mechanism.
*'''By influencing the course of action potentials and especially the relative refractory period'''.Prolonging the relative refractory period can often eliminate tachycardias. These drugs affect potassium channels and delay the repolarization phase.
*'''By blocking slow calcium channels'''. These drugs reduce the sinus frequency by slowing the depolarization of pacemaker cells. They also reduce the excitation speed of the AV node.
*'''By blocking sympathetic activity''', which can also cause arrhythmias, β1-adrenergic receptor blocking drugs are used to suppress this sympathetic effect on the heart. Because β-adrenoceptors are coupled to ion channels, β-blockers also indirectly alter ion flux across the membrane, especially calcium and potassium.
*In the case of AV block, vagal inhibitors (eg atropine, a muscarinic receptor antagonist) are sometimes used. AV block may occur during treatment with β-blockers.
*In some cases, the ventricular rate is inadequate because it is initiated by atrial flutter or atrial fibrillation. Because it is very important to prevent ventricular tachycardia, drugs are often used to slow the excitation of the AV node. Calcium channel blockers and β-blockers are often used for this purpose. For the same reason, the parasympathomimetic effect of digitalis can be used.<ref name="Schroeter">{{Citace
|typ = web
|korporace =
|příjmení1 = Schroeter
|jméno1 = Ute
|příjmení2 = Rogers
|jméno2 = James
|příjmení3 =
|jméno3 =
|kolektiv =
|název = Cardiovascular pharmacology for anaesthetists (World Anaesthesia Online, issue 11)
|rok = 2000
|datum_revize =
|citováno = 22.4.2010
|url = https://www.ndcn.ox.ac.uk/divisions/nda/wfsa/html/u11/u1102_01.htm
}}</ref><ref name="Klabunde">{{Citace
|typ = web
|korporace =
|příjmení1 = Klabunde E.
|jméno1 = Richard
|příjmení2 =
|jméno2 =
|příjmení3 =
|jméno3 =
|kolektiv = ne
|název = Cardiovascular Pharmacology Concepts
|rok = 2005
|datum_revize = 2009
|citováno = 24.4.2010
|url = http://www.cvpharmacology.com/
}}</ref>
 
Antiarrhythmics often have a'''proarrhythmic effect''', so they should only be used for symptomatic arrhythmias that worsen the patient's quality of life or prognosis.<ref name="Bultas" />
 
===Classes of drugs used to treat arrhythmias<ref name="Klabunde" />===
 
#'''Class I - Fast sodium channel blockers''' – atrial fibrillation cardioversion, etc.
##Ia - blockade of Na + channels - quinidine,
##Ib - blockade of Na + channels - lidocaine, trimecaine, phenytoin
##Ic - blockade of Na + channels - propafenone, flecainide
#'''Class II - β-blockers''' (see above) - control of ventricular response in supraventricular tachycardia,
#'''Class III - Potassium channel blockers''' (eg amiodarone) - supraventricular and ventricular tachycardia,
#'''Class IV - Calcium channel blockers''' (verapamil, diltiazem) - supraventricular tachyarrhythmias only.
#'''Next''':
##'''''adenosine''''',
##'''''electrolyte supplementation''''' (magnesium and potassium salts),
##'''''cardiac glycosides''''' (digitalis),
##'''''atropine''''' (muscarinic receptor antagonist),
##'''''bradines''''' (SA node blockers)<ref name="Bultas" />.
 
====Class Ia antiarrhythmics====
 
----
 
Class Ia antiarrhythmic sodium channel blockade prolongs action potential duration and slightly prolongs repolarization<ref name="Hynie" />.
 
;Quinidine
 
For pharmacological cardioversion of atrial fibrillation and flutter. It has many side effects.
;Procainamide
 
Used to treat ventricular and supraventricular arrhythmias.
 
;Disopyramide
 
For the treatment of tachyarrhythmias, especially after a heart attack.
 
====Class Ib antiarrhythmics====
 
----
 
They block the sodium channel, but have little effect on the rate of increase in action potential. They shorten the repolarization time<ref name="Hynie" />.
 
;Lidocaine, trimecaine
 
Used mainly in the treatment of ventricular tachycardia.
 
====Class Ic antiarrhythmics====
 
----
 
They block the sodium channel, significantly slowing down the rate of action potential onset and conduction. The time of repolarization is little affected by them<ref name="Hynie" />.
 
;Propafenone
 
Used to treat atrial fibrillation and ventricular tachycardia.
 
Class I antiarrhythmics are not commonly used today, except for propafenone and phlecainide (both of Class Ic)<ref name="Bultas" />.
====Class II antiarrhythmics====
 
----
 
These are β-adrenergic blockers. They reduce calcium channel phosphorylation. They negatively affect the frequency of spontaneous depolarization in the SA and AV nodes. They do not affect the repolarization time<ref name="Hynie" />.
 
====Class III antiarrhythmics====
 
----
 
They block potassium channels, prolong the action potential and dampen the effect of sympathetic nervous system. They prolong the refractory of the atria, transmission system and ventricles<ref name="Bultas" />.They are used in atrial fibrillation and ventricular tachycardia.
 
;Amiodarone
 
It has a slow onset of action and an extremely long elimination half-life (up to 100 days), so we must monitor its plasma level. It is the most effective antiarrhythmic in suppressing ventricular and supraventricular tachycardias. It is indicated after an acute myocardial infarction, at a high risk of sudden cardiac death and impaired left ventricular systolic function. Amiodarone has an undesirable negative inotropic effect, which requires careful use in heart failure. At the same time, however, it is the only antiarrhythmic that reduces the risk of atrial fibrillation (eg again in heart failure)<ref name="Bultas" />.It has numerous side effects, especially thyroid disorders (hypothyroidism, rarely hyperthyroidism), bradycardia, pulmonary fibrosis, hepatotoxicity and corneal deposits.
 
;Sotalol
 
It prolongs the duration of the action potential and slows down the repolarization phase. Use is limited due to its lower antiarrhythmic effect<ref name="Bultas" />.
 
====Class IV antiarrhythmics====
 
----
 
Calcium channel blockers verapamil and diltiazem inhibit conduction in the AV node. They do not affect the repolarization time. They are mainly used for supraventricular tachycardias<ref name="Hynie" />.
 
====Adenosine====
 
----
 
Adenosine acts by stimulating potassium channels. It is given intravenously for its short duration of action. It reduces the automation of the sinus node and slows down the conduction of excitation in the atrial node. It slows the response of the ventricles in supraventricular arrhythmias (it is the medicine of first choice). It can also be given during pregnancy.
 
====Bradins<ref name="Bultas" />====
 
----
 
Bradins act selectively in the sinus node, where they slow down spontaneous diastolic depolarization. Their effect is only to slow down the heart rate.
 
The main indication for bradin is angina pectoris.
 
===Summary of antiarrhythmic classes<ref name="Klabunde" />===
 
<center>
{| class="wikitable"
|+'''''Class IA: atrial fibrillation, flutter; supraventricular & ventricular tachyarrhythmias'''''
|-
|'''quinidine'''||anticholinergic (moderate))|||cinchonismus (visual disturbances, tinnitus, headache); nausea; potentiates digitalis toxicity
|-
|'''procainamide '''||anticholinergic (weak); relatively short half-life|||lupus-like syndrome in 25-30% of patients
|-
|'''disopryamide'''||anticholinergic (strong)|||negative inotropic effect
|}
</center>
 
<center>
{| class="wikitable"
 
|+'''''Class IB: ventricular tachyarrhythmias (VT)'''''
|-
|'''lidocaine'''||IV only; VT and PVC|||high efficiency in ischemic myocardium
|-
|'''mexiletine'''||orally active lidocaine|||analogue high potency in ischemic myocardium
|-
|'''phenytoin'''||digitalis-induced arrhythmias
|}
</center>
 
<center>
{| class="wikitable"
|+'''''Class IC: life-threatening supraventricular tachyarrhythmias (SVT) + ventricular tachyarrhythmias (VT)'''''
|-
|'''flecainide'''||SVT|||can induce life-threatening VT
|-
|'''propafenone'''||SVT & VT|||β-blocking and Ca2 + -channel blocking activity may exacerbate heart failure
|-
|'''moricizin'''||VT|||activity IB
|}
</center>
===Arrhythmia treatment - summary<ref name="Klabunde" />===
 
<center>
{| class="bluetable"
!Status!!Drug!!Comment
|-
|Sinus tachycardia||Class II, IV|||Other related conditions may require treatment.
|-
|Atrial fibrillation/ flutter||Class IA, IC, II, III, IV, digitalis, adenosine|||The goal is to control ventricular rate; necessary anticoagulant treatment.
|-
|Paroxysmal supraventricular tachycardia||Class IA, IC, II, III, IV, adenosine|||
|-
|AV reentry tachycardia||atropine|||Acute reversal.
|-
|Ventricular tachycardia||Class I, II, III|||
|-
|Premature ventricular complexes (PVC)||Class II, IV; Mg2 + salts|||Often benign and do not require treatment
|-
|Digitalis toxicity||Class IB, Mg2 + salts; KCl|||
|}
</center>
 
<noinclude>
==Odkazy==
===Související články===
 
*[[Převodní systém srdeční]]
*[[Poruchy srdečního rytmu]]
*[[Vliv léků na srdeční rytmus]]
 
===Externí odkazy===
 
*{{Akutně|223|Léčba tachyarytmie — interaktivní algoritmus + test}}
 
===Zdroje===
 
* {{Citace
| typ = kniha
| příjmení1 = Hynie
| jméno1 = Sixtus
| titul = Farmakologie v kostce
| vydání = -
| vydavatel = Triton
| rok = 2001
| isbn = 9788072541812
| rozsah = 520
| strany =
}}
 
* {{Citace
| typ = kniha
| příjmení1 = Lincová
| jméno1 = Dagmar
| titul = Základní a aplikovaná farmakologie
| vydání = -
| vydavatel = Galén
| rok = 2007
| isbn = 9788072623730
| rozsah = 672
| strany =
}}
===Reference===
<references />
</noinclude>
 
[[Kategorie:Vložené články]]
[[Kategorie:Farmakologie]]
[[Kategorie:Kardiologie]]
[[Kategorie:Vnitřní lékařství]]
[[Kategorie:Neodkladná medicína]]
[[Kategorie:Vložené články]]
 
[[Kategorie:Vložené články]]
[[Kategorie:Farmakologie]]
[[Kategorie:Fyziologie]]
[[Kategorie:Patofyziologie]]
[[Kategorie:Vnitřní lékařství]]
[[Kategorie:Kardiologie]]


===== Vedlejší efekty a kontraindikace =====
Mezi vedlejší efekty centrálně působících sympatolytik patří sedace, xerostomie, bradykardie, ortostatická hypotenze, impotence a nauzea. Při dlouhodobé terapii se mohou objevit otoky.


<noinclude>
<noinclude>

Revision as of 02:51, 29 December 2021

The activity of the heart is controlled by the autonomic nervous system through mediators. The mediator of the sympathetic nervous system is noradrenaline, the mediator of the parasympathetic system is acetylcholine. Cardiac activity is also affected by adrenaline from the adrenal medulla. Acetylcholine suppresses cardiac activity, while norepinephrine has a stimulating effect on the heart. The action of mediators is mediated by specific receptors located on the cell membrane. Cardiac activity depends on the presence of calcium in the extracellular space and in the endoplasmic reticulum.

Drugs that affect the rhythm (and other functions) of the heart pump include cardioinhibitors, cardiotonics and antiarrhythmics.

Cardioinhibitors (drugs that reduce heart function) have a negative effect chronotropically (by reducing the heart rate) and inotropically (by reducing the contractility of the heart muscle), which leads to a reduction in cardiac output and blood pressure. These changes reduce the activity of the heart and thus the consumption of oxygen by the myocardium. The mechanisms of action of these drugs also include a reduction in electrical conduction (negative dromotropic effects).

The mechanical and metabolic effects of these drugs predispose them to the treatment of hypertension, angina pectoris and myocardial infarction. In addition, due to their effect on the electrical activity of the heart, they are suitable for the treatment of cardiac arrhythmias[1]. Some cardioinhibitors (especially certain β-blockers) are used to treat heart failure..

Hypertension

It is caused by an increase in cardiac output or an increase in systemic vascular resistance. Cardioinhibitors reduce the heart rate and heart rate, which leads to a reduction in cardiac output and thus to a decrease in blood pressure.

Angina pectoris and myocardial infarction

Cardioinhibitors (by reducing heart rate, contractility and arterial pressure) reduce the heart's work and its oxygen requirements. In this way, they can relieve the patient of anginal pain, which most often arises due to lack of oxygen during increased exertion. Significance in the treatment of myocardial infarction lies not only in the increase in the ratio of oxygen supply and demand, but also in the ability to inhibit post-infarction remodeling of cardiac tissue[1].

Cardiac arrhythmia

Cardioinhibitors alter pacemaker activity and conduction control, and are therefore useful in the treatment of arrhythmias caused by both abnormal automation and abnormal conduction[1].

Heart Failure

Although it may seem paradoxical that cardioinhibitors are used in heart failure when the myocardium is functionally suppressed, clinical studies have shown that certain cardiohibitors have been shown to improve cardiac function in certain types of heart failure[1]. This effect can be deduced from their blockade of excessive sympathetic effects on the heart, which damage failing hearts.

Drug classes and general mechanisms of their action

Clinically used cardioinhibitors can be divided into three groups: beta-blockers, calcium channel blockers and centrally acting sympatholytics.

Beta-blockers (beta-adrenergic receptor antagonists))


It binds to β-adrenergic receptors in the conduction system and in the working myocardium. There are both types in the heart: β-1 and β-2 adrenoreceptors. However, β-1 predominates numerically and functionally. These receptors primarily bind norepinephrine released from sympathetic adrenergic nerve endings. In addition, it weighs adrenaline and norepinephrine circulating in the blood.β-blockers prevent the binding of these ligands to receptors by competing with them for binding site. They reduce the effects of sympathetic drugs (ie, sympatholytics) that normally stimulate chronotropy, inotropy, and dromotropy. Their effect even increases when sympathetic activity is increased. Clinically used β-blockers are either non-selective (β-1 or β-2) blockers or relatively selective β-1-blockers (relative selectivity may be lost at higher drug doses). Some of the β-blockers have other effects besides β-blocking. The third generation of β-blockers are substances that have additional vasodilatory effects by acting on α-adrenoreceptors of blood vessels.

Some beta-blockers, upon binding to the β-adrenoceptor, partially activate this receptor while preventing noradrenaline binding. These so-called partial agonists (partial β-blockers) therefore provide a certain background for sympathetic activity, even if they prevent normal or increased sympathetic effects. We speak of them as carriers of intrinsic sympathomimetic activity (ISA).Some β-blockers also carry membrane stabilization activity (MSA), which is also found in sodium channel blockers belonging to antiarrhythmics.

β-adrenoceptors are coupled to Gs-proteins that activate adenyl cyclase. The increase in cAMP activates cAMP-dependent protein kinases (PK-A), which phosphorylate calcium channels and thus cause increased calcium flux into the cell. An increase in intracellular calcium during action potentials leads to increased calcium release from the sarcoplasmic reticulum, which ultimately increases inotropy (contractility). Gs-protein activation also leads to an increase in the frequency of heartbeats (chronotropy). PK-A protein kinases also phosphorylate portions of the sarcoplasmic reticulum, leading to increased calcium release via ryanodine receptors (ryanodine-sensitive calcium channels) associated with the sarcoplasmic reticulum. This provides more calcium for its binding to troponin-C, which increases inotropy. PK-A can further phosphorylate myosin light chains, which may contribute to the positive inotropic effect of β-adrenoceptor stimulation. They are used to treat hypertension, angina pectoris, myocardial infarction and arrhythmias[1].

Hypertension

β-blockers reduce arterial blood pressure by reducing cardiac output. They can thus be an effective treatment for hypertension, especially when used in combination with diuretics [1]. Hypertension in some patients is caused by emotional stress, which activates the sympathetic nervous system, while in other cases, for example, pheochromocytoma, which increases the level of circulating catecholamines. Even in these cases, treatment with β-blockers is successful. In addition, β-blockers inhibit the activity of the renin-angiotensin-aldosterone system. Acute treatment with β-blockers is not very effective in lowering blood pressure due to the compensatory increase in vascular resistance in the systemic circulation. The hypotensive effect of the substances in this group is detectable during the first days of treatment, but they do not reach full effect until after 2-3 weeks of administration[2].


Angina pectoris and myocardial infarction

The antianginal effect of β-blockers is attributed to their depressant effect on heart rate, contractility and their hypotensive effects. β-blockers reduce cardiac work and thus the need for myocardial oxygen saturation (see above).

Cardiac arrhythmia

The antiarrhythmic properties of β-blockers (class II antiarrhythmics) are related to their ability to inhibit the effect of sympathetic nervous activity. The sympathetic nervous system increases the frequency of excitations in the sinuatrial node, which increases the sinus rhythm. It also increases the rate of transmission of excitation to the ventricular myocardium and stimulates the formation of ectopic excitations. These sympathetic effects are mediated mainly through β-1-adrenoceptors. Therefore, β-blockers may reduce these effects, thus reducing sinus rhythm, atrial conduction velocity (which may block reentry mechanisms), and inhibit abnormal pacemaker activity. β-blockers also affect non-pacemaker action potentials by increasing action potential duration and relative refractory periods. This effect may play a major role in preventing arrhythmias caused by the reentry phenomenon[1].

Heart Failure

Most heart failure patients suffer from systolic dysfunction, ie. the contraceptive function of the heart is limited (ie loss of inotropy). Although it is not entirely clear what mechanism β-blockers help with heart failure, it is certain that they improve heart function and reduce mortality[1].


Classes of β-blockers and specific drugs, clinical use.
Class / Medicine HTN Angina Arrhy IM CHF Comment
Non-selective β-1/2
carteolol X ISA; long acting; also used in glaucoma
carvedilol X X α α-blocking effect
labetalol X X ISA, α α-blocking effect
nadolol X X X X long acting
penbutolol X X ISA
pindolol X X ISA, MSA
propranolol X X X X MSA; a typical β-blocker
sotalol X still has other effectsy
timolol X X X X still has other effects
β-1-selective
acebutol X X X ISA
atenolol X X X X
betaxolol X X X MSA
bisoprolol X X X
esmolol X X particularly short effec
metoprolol X X X X X MSA

Abbreviations: HTN - hypertension, Arrhy - arrhythmia, IM - myocardial infarction, CHF - congestive heart failure, ISA - own sympathomimetic activity

Calcium channel blockers (CCB)


It binds to L-type calcium channels (slow calcium channels[2]) in the cardiomyocyte membrane and nodal tissue. These channels are responsible for regulating calcium influx into the myocardial cell, which stimulates its contraction. In cardiac node tissue (SA and AV node), these channels play a role in pacemaker currents and the initial phase of action potential formation. Thus, by blocking the entry of calcium into the cell, these drugs act negatively inotropically (reduce the strength of the heartbeat), negatively chronotropically (reduce the heart rate) and reduce the rate of excitation transmission by the cardiac conduction system (negatively dromotropically affects the AV node in particular). In vascular smooth muscle, they induce relaxation and a decrease in peripheral resistance with a decrease in blood pressure[2]. They are used to treat hypertension, angina and arrhythmias.

Hypertension

By causing smooth muscle relaxation in the blood vessel wall, CCBs reduce systemic vascular resistance, thereby lowering blood pressure. These drugs act mainly on arterial resistant vessels, with minimal effect on venous capacity vessels[1].

Angina pectoris

The antianginal effects of CCBs are derived from their vasodilatory and cardiac suppressive effects. Systemic vasodilation reduces arterial pressure, which leads to a reduction in ventricular afterload, thereby reducing oxygen demand. For the heart, more selective CCBs (verapamil and diltiazem) reduce the frequency of heartbeats and myocardial contractility, making them (based on the reduction of myocardial oxygen requirements) excellent anti-angiogenic drugs[1]. CCBs can also cause coronary arteries to dilate, thus preventing their spasm (Prinzmetal's angina pectoris).

Cardiac arrhythmia

The antiarrhythmic group CCB (class IV antiarrhythmics) acts mainly by reducing the conduction velocity and prolonging repolarization, especially in the atrioventricular node. Delayed AV node action helps prevent reentry mechanism, which may cause supraventricular tachycardia.

Calcium channel blocker classes

We distinguish three classes of CCB. They differ not only in their basic chemical structure, but also in their relative selectivity to cardiac or vascular calcium channels. Most CCBs acting on vascular smooth muscle are dihydropyridines.. They are therefore mainly used to reduce vascular resistance and blood pressure, ie to treat hypertension. They are not used to treat angina pectoris, due to its strong vasodilatory and pressure-lowering effects, which can lead to reflex cardiac pacing (tachycardia and increased inotropy), which leads to a dramatic increase in myocardial oxygen consumption. Dihydropyrinidins include the following specific drugs:

  • amlodipine;
  • felodipine;
  • isradipine;
  • nikardipine;
  • nifedipine;
  • nimodipine;
  • nitrendipine.

(Note: some newer substances such as amlodipine or isradipine are also called second-generation dihydropyridines[2].)

Non-dihydropyridines include two other classes of CCBs. Verapamil(phenylalkylamine class) is relatively selective for the myocardium and is less effective as a systemic vasodilator. This drug is very important in the treatment of angina and arrhythmias. Diltiazem (benzothiazepine class) is an intermediate step between verapamil and dihydropyridines in terms of selectivity for vascular calcium channels. It lowers the heart rhythm and has a vasodilating effect. Through these mechanisms, it is able to lower blood pressure without causing the same degree of reflex pacing as dihydropyridines[1].

Side effects and contraindications

Dihydropyrinidine CCBs can cause congestion, headache, excessive hypotension, edema, and reflex tachycardia. In terms of activation of sympathetic reflexes and lack of direct effects on the heart muscle, they are not very suitable for the treatment of angina pectoris[1].Long-acting dihydropyridines have been shown to be safer antihypertensives due to reduced reflex responses. Cardiac-selective non-dihydropyridine CCBs can cause excessive bradycardia, electrical transmission impairment (AV node blockage) and decreased contractility. Therefore, they should not be used in patients with chronic bradycardia, cardiac conduction defects or heart failure. CCBs (mainly non-dihydropyridine) should also not be prescribed to patients treated with β-blockers[1].


Centrally acting sympatholytics


The sympathetic nervous system plays a major role in the regulation of arterial blood pressure. It increases the heart rate (has a positive chronotropic effect), myocardial contractility (positively inotropically) and the conduction velocity in the heart (positively dromotropic effect). The adrenergic sympathetic fibers that innervate the heart and blood vessels are postganglionic efferent nerve fibers. The cell bodies of these nerves are found in the prevertebral and paravertebral sympathetic ganglia. The preganglionic sympathetic fibers that lead to the spinal ganglia originate in the elongated spinal cord. There are sympathetic excitatory neurons that have significant basal activity, which gives the heart a certain tone under basal conditions. These neurons receive signals from other vagal neurons from the nucleus tractus solitarii (it receives signals from peripheral baroreceptors and chemoreceptors) and from neurons in the hypothalamus. Together, this neural system regulates sympathetic (and parasympathetic) transmission to the heart and blood vessels. Sympatholytic drugs can block the sympathetic adrenergic system at three levels. The first, peripheral sympatholytics - α and β-adrenoceptor antagonists - block the effect of norepinephrine on the effector organ (heart or blood vessels). The others are so called ganglion blockers, which block the transmission of impulses in the sympathetic ganglia. The third group consists of drugs that block sympathetic activity within the brain. We call them centrally acting sympatholytics.

Centrally acting sympatholytics block sympathetic activity by binding and activating α2-adrenoceptors in the membrane of elongated spinal cord cells, which regulate cardiac activity. This reduces the effect of sympathetic nervous system and reduces cardiac output. These drugs are only used to treat hypertension[1].

Therapeutic indications

Centrally acting α-2-adrenoceptor agonists are used to treat hypertension, but are not used as first-line drugs due to their side effects in the brain. They are usually prescribed in combination with diuretics to prevent the accumulation of fluids, which would increase blood volume and thus reduce the effect of the drug. These drugs are useful in patients with kidney disease because they do not affect renal function[1].

Specific drugs

Several different centrally acting antihypertensives are used in clinical practice:

  • clonidine;
  • guanabenz;
  • guanfacine;
  • α-methyldopa.

Clonidine, guanabenz and guanfacine are structurally similar drugs and have identical antihypertensive effects. α-methyldopa is a structural analogue of dopa and must first be converted to α-methynoradrenaline, which only acts as an α-2-adrenoceptor agonist in the spinal cord and reduces sympathetic irritation. α-methyldopa is the drug of choice in the treatment of hypertension in pregnancy when its teratogenicity has not been established[1].

Side effects and contraindications

Side effects of centrally acting sympatholytics include sedation, xerostomia, bradycardia, orthostatic hypotension, impotence, and nausea. Swelling may occur during long-term therapy.

Cardiotonics Cardiotonics (pacemakers) potentiate heart function by increasing heart rate (chronotropy) and myocardial contractility (inotropy), which increases cardiac output and arterial pressure. Many of them also have a positive dromotropic and lusitropic effect. Some of these drugs cause systemic vasodilation, while others have vasoconstrictive effects. The effects of these drugs on the heart muscle predispose them to use in heart failure, cardiogenic shock and hypotension[1]. In the treatment of heart failure, cardiotonics today prefer procedures that reduce the demands on myocardial function - ie reduce afterload or preload, or both (diuretics, organic nitrates, calcium channel blockers, ACE inhibitors).[2]

Heart failure and cardiogenic shock

The main cause of heart failure and hypotension caused by acute heart failure (cardiogenic shock) is loss of myocardial contractility, which leads to reduced organ perfusion and hypotension. Cardiac function can be improved by reducing afterload, increasing preload (increased fluid volume) and increasing cardiac contraction. Cardiotonics work by this mechanism. Sympathomimetics or phosphodiesterase inhibitors are used for short-term therapy and may be harmful if used for a long time[1]. In contrast, cardiac glycosides (digitalis and others) are safe and effective in the long-term treatment of heart failure[1].

Circulatory shock

It is a form of shock caused by hypovolemia (for example in bleeding conditions) or vasodilation during infection (septic shock). Cardiotonics, especially sympathomimetics such as beta-agonists, are used to improve (ie increase) blood pressure. They are often used in conjunction with infusions and vasoconstrictor drugs.

Drug classes and general mechanisms of their action

Cardiotonics can be divided into four basic classes: beta-adrenoceptor agonists (beta-agonists), cardiac glycosides (digitalis and others), phosphodiesterase inhibitors and calcium sensitisers.

Beta-agonists


These are sympathomimetics that bind to cardiac β-adrenoreceptors. Activation of β-1 and β-2 adrenergic receptors leads to an increase in heart rate and contractility, which increases cardiac output. Their activation also has a positive dromo- and lusitropic effect. These drugs are indicated for both acute and refractory heart failure and circulatory shock. Β-Adrenoceptor agonists bind to β-receptors in the heart and smooth muscle. They also have effects in tissues other than the heart, especially in the smooth muscle of the bronchi (relaxation), liver (stimulating glycogenolysis) and kidneys (stimulating renin release). They therefore cause cardiac pacing (increased heart rate, contractility, rate of transfer, relaxation) and systemic vasodilation. An increase in arterial pressure may occur, but not necessarily, as a decrease in vascular resistance interferes with an increase in cardiac output. Thus, the final effect on blood pressure depends on the relative effect on cardiac or vascular receptors[1]. β-agonists cause β-receptor down-regulation, which limits their use to short-term. As they are catecholamines (and have low bioavailability), they must be administered by intravenous infusion. [1]. The principle of operation of β-adrenergic receptors - see above.

Specific drugs and their therapeutic use

The table shows several different β-agonists that are used clinically to treat heart failure and circulatory shock. These are either natural catecholamines or their analogues. Almost all have a certain degree of α-agonist activity. For some of these drugs, receptor selectivity is highly dose dependent.

β-agonists
Drug Receptor selectivity Clinical use Comment
Adrenalin β-1 = β-2> α-1 = α-2 Anaphylactic shock; cardiogenic shock; cardiac arrest Low doses cause cardiac pacing and vasodilation. It has a vasoconstrictive effect at high doses.
Noradrenaline β-1 = α-1> β-2 = α-2 Severe hypotension; septic shock Reflex bradycardia masks direct stimulatory effects on the SA node.
Dopamine β-1 = β-2> α-1 Acute heart failure, cardiogenic shock and acute renal failure Biosynthetic precursor of noradrenaline, stimulates its release.

At low doses, it stimulates the heart and reduces systemic vascular resistance. It has a vasodilating effect at high concentrations.

Dobutamine β-1> β-2> α-1 Acute heart failure; refractory heart failure The net effect is cardiac pacing with weak vasodilation.
Isoproterenol β-1 = β-2 Bradycardia and AV block. The net effect is cardiac pacing and vasodilation with little pressure change.
Side effects and contraindications

The main side effect of β-agonists is cardiac arrhythmias. Because they increase myocardial oxygen demand, they can accelerate the development of angina pectoris in patients with coronary artery disease. They can also cause headaches and tremors[1].

Cardiac glycosides (digitalis)


They have been used for more than 200 years to treat heart failure.They represent a family of compounds derived from the plant Digitalis purpurea (foxglove). These drugs inhibit Na + / K + ATPase in cardiac sarcolemma, leading to an increase in intracellular calcium through the Na + / Ca 2+ -exchange system. The increase in intracellular calcium subsequently stimulates the release of additional calcium from the sarcoplasmic reticulum, its binding to troponin C, which increases contractility.

Due to the long half-life of digitalis, this fact should be considered when dosing. It should be administered for several days to reach its therapeutic plasma level (0.5-1.5 ng / ml[1]). Digitalis has a relatively narrow therapeutic window. Plasma concentrations higher than 2.0 ng / ml can be toxic[1]. Digitalis toxicity is manifested by (sometimes life-threatening) cardiac arrhythmias. Digibind (immune mechanism) or potassium supply are used to reduce digitalis levels (especially if toxicity is associated with hypokalaemia).

Therapeutic use:

Heart Failure

Digitalis compounds have cardiotonic effects and are used in heart failure. Although new and more effective drugs are already available, digitalis is still widely used. Clinical studies in patients with heart failure have shown that digoxin, when used in combination with diuretics and vasodilators, increases cardiac output and ejection fraction and reduces filling and capillary wedge pressures[1]. This reduces congestion in the lungs and the risk of edema. Heart rate changes slightly. These effects are expected with a drug that increases inotropy.

Atrial fibrillation and flutter

Atrial fibrillation and atrial flutter lead to an accelerated ventricular rate that can affect their filling (reducing their filling time). Digoxin and other drugs in this group are useful in reducing the ventricular rate, which was initiated by the increased rate of atrial contractions. The mechanism of this beneficial action of digoxin is its parasympathomimetic effect. Activation of the vagus can reduce the rate of conduction through the atrioventricular node to the point that some impulses are blocked. A smaller number of pulses is then fed to the chambers and the frequency of the chamber contractions decreases. In addition, digoxin increases the relative refractory period in the AV node.

Specific drugs from the group of cardiac glycosides
Drug Oral absorption Half-life (hours) Elimination
Digoxin 75 % 40 kidneys
Digitoxin >90 % 160 liver
Oubain 0 % 20 kidneys

Note: Oubain is no longer used today. [2]

Side effects and contraindications

The most significant side effect of digitalis is cardiac arrhythmias, especially atrial tachycardia and atrioventricular block. The drug is contraindicated in patients with hypokalaemia, AV block or Wolff-Parkinson-White syndrome. Impaired renal function leads to increased plasma concentrations of digitoxin as it is eliminated by the kidneys.

Phosphodiesterase inhibitors


These are drugs that inhibit the enzyme (cAMP-dependent phosphodiesterase, PDE) responsible for reducing cAMP. This leads to an increase in cAMP levels, which has a positive inotropic and chronotropic effect in the heart. cAMP is the second messenger in the pathway initiated by the binding of catecholamines to beta1-adrenergic receptors coupled to Gs-proteins. This is followed by activation of the adenyl cyclase and the formation of cAMP. cAMP (reaction with other intracellular messengers) increases contractility, heart rate and conduction velocity.

These drugs are used to treat acute and refractory heart failure, but not chronic heart failure. The drugs used target cAMP-dependent phosphodiesterase (PDE3) isoform 3 [1].

Therapeutic indication

The pacing and vasodilatory properties of PDE3 inhibitors predispose them to the treatment of heart failure. Artery dilation reduces the afterload of a failing ventricle and leads to an increase in ejection fraction and organ perfusion. The reduction in afterload leads to a secondary decrease in preload, which increases the mechanical efficiency of the dilated heart and reduces the oxygen requirements of the failing myocardium. The pacing effect of these drugs increases inotropy, which leads to an increase in heart rate and ejection fraction. However, tachycardia is also the result, so drugs are dosed to minimize the positive chronotropic effect. The baroreceptor reflex, which appears in response to hypotension, may also contribute to tachycadia. Clinical trials have shown that long-term therapy with PDE3 inhibitors increases the mortality of heart failure patients. These drugs are very useful in the treatment of acute decompensated heart failure[1].They are always used together with other drugs such as diuretics, ACE inhibitors, β-blockers or digitalis.

Specific drugs

PDE3 inhibitors are milrinone and amrinone (possibly emoximone and piroximone[2]). ((PDE5 inhibitors are used to treat erectile dysfunction).

Side effects and contraindications of PDE3 inhibitors

The most common and at the same time most serious side effect of PDE3 inhibitors are ventricular arrhythmias, some of which can reach life-threatening proportions. Some patients may experience headaches and low blood pressure[1].


Calcium sensitizers


They represent the mostpacemaker class. These drugs increase the sensitivity of troponin-C to calcium, so more calcium binds to it, which increases the contractility of the heart. These drugs are currently undergoing clinical trials for possible use in heart failure[1].These include, for example, some phosphodiesterase III inhibitors (sulmazol, imobendan, levosimendal)[2].


Odkazy

Externí odkazy

Použitá literatura

  1. Jump up to: a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab
  2. Jump up to: a b c d e f g h


>Antiarrhythmics (also antidysrhythmics) are drugs used to treat heart rhythm disorders, and in some cases preventively. They affect cardiac contractility and hemodynamics[1].

Arrhythmia pharmacotherapy depends on the type of arrhythmia, its duration, severity, and the condition of the heart muscle. Arrhythmias are divided into tachyarrhythmias and bradyarrhythmias.

The mechanisms of tachyarrhythmias may be increased irritability, increased automaticity, or reentry. Treatment - reduction of excitability and automaticity, treatment of ischemia is based on the diagnosis of the mechanism of arrhythmia.[2]

Therapeutic use

The main goal of antiarrhythmic treatment is to restore normal heart rhythm and transmission; possibly at least to prevent more severe to fatal arrhythmias. They reduce or increase the speed of conduction, change the excitability of the heart cells and suppress abnormal automation.

All antiarrhythmics alter membrane conductivity by the following mechanisms:

  • By blocking fast sodium channels. These channels determine the rate of membrane depolarization during the action potential, which can help eliminate tachyarrhythmias caused by the reentry mechanism.
  • By influencing the course of action potentials and especially the relative refractory period.Prolonging the relative refractory period can often eliminate tachycardias. These drugs affect potassium channels and delay the repolarization phase.
  • By blocking slow calcium channels. These drugs reduce the sinus frequency by slowing the depolarization of pacemaker cells. They also reduce the excitation speed of the AV node.
  • By blocking sympathetic activity, which can also cause arrhythmias, β1-adrenergic receptor blocking drugs are used to suppress this sympathetic effect on the heart. Because β-adrenoceptors are coupled to ion channels, β-blockers also indirectly alter ion flux across the membrane, especially calcium and potassium.
  • In the case of AV block, vagal inhibitors (eg atropine, a muscarinic receptor antagonist) are sometimes used. AV block may occur during treatment with β-blockers.
  • In some cases, the ventricular rate is inadequate because it is initiated by atrial flutter or atrial fibrillation. Because it is very important to prevent ventricular tachycardia, drugs are often used to slow the excitation of the AV node. Calcium channel blockers and β-blockers are often used for this purpose. For the same reason, the parasympathomimetic effect of digitalis can be used.[3][4]

Antiarrhythmics often have aproarrhythmic effect, so they should only be used for symptomatic arrhythmias that worsen the patient's quality of life or prognosis.[2]

Classes of drugs used to treat arrhythmias[4]

  1. Class I - Fast sodium channel blockers – atrial fibrillation cardioversion, etc.
    1. Ia - blockade of Na + channels - quinidine,
    2. Ib - blockade of Na + channels - lidocaine, trimecaine, phenytoin
    3. Ic - blockade of Na + channels - propafenone, flecainide
  2. Class II - β-blockers (see above) - control of ventricular response in supraventricular tachycardia,
  3. Class III - Potassium channel blockers (eg amiodarone) - supraventricular and ventricular tachycardia,
  4. Class IV - Calcium channel blockers (verapamil, diltiazem) - supraventricular tachyarrhythmias only.
  5. Next:
    1. adenosine,
    2. electrolyte supplementation (magnesium and potassium salts),
    3. cardiac glycosides (digitalis),
    4. atropine (muscarinic receptor antagonist),
    5. bradines (SA node blockers)[2].

Class Ia antiarrhythmics


Class Ia antiarrhythmic sodium channel blockade prolongs action potential duration and slightly prolongs repolarization[1].

Quinidine

For pharmacological cardioversion of atrial fibrillation and flutter. It has many side effects.

Procainamide

Used to treat ventricular and supraventricular arrhythmias.

Disopyramide

For the treatment of tachyarrhythmias, especially after a heart attack.

Class Ib antiarrhythmics


They block the sodium channel, but have little effect on the rate of increase in action potential. They shorten the repolarization time[1].

Lidocaine, trimecaine

Used mainly in the treatment of ventricular tachycardia.

Class Ic antiarrhythmics


They block the sodium channel, significantly slowing down the rate of action potential onset and conduction. The time of repolarization is little affected by them[1].

Propafenone

Used to treat atrial fibrillation and ventricular tachycardia.

Class I antiarrhythmics are not commonly used today, except for propafenone and phlecainide (both of Class Ic)[2].

Class II antiarrhythmics


These are β-adrenergic blockers. They reduce calcium channel phosphorylation. They negatively affect the frequency of spontaneous depolarization in the SA and AV nodes. They do not affect the repolarization time[1].

Class III antiarrhythmics


They block potassium channels, prolong the action potential and dampen the effect of sympathetic nervous system. They prolong the refractory of the atria, transmission system and ventricles[2].They are used in atrial fibrillation and ventricular tachycardia.

Amiodarone

It has a slow onset of action and an extremely long elimination half-life (up to 100 days), so we must monitor its plasma level. It is the most effective antiarrhythmic in suppressing ventricular and supraventricular tachycardias. It is indicated after an acute myocardial infarction, at a high risk of sudden cardiac death and impaired left ventricular systolic function. Amiodarone has an undesirable negative inotropic effect, which requires careful use in heart failure. At the same time, however, it is the only antiarrhythmic that reduces the risk of atrial fibrillation (eg again in heart failure)[2].It has numerous side effects, especially thyroid disorders (hypothyroidism, rarely hyperthyroidism), bradycardia, pulmonary fibrosis, hepatotoxicity and corneal deposits.

Sotalol

It prolongs the duration of the action potential and slows down the repolarization phase. Use is limited due to its lower antiarrhythmic effect[2].

Class IV antiarrhythmics


Calcium channel blockers verapamil and diltiazem inhibit conduction in the AV node. They do not affect the repolarization time. They are mainly used for supraventricular tachycardias[1].

Adenosine


Adenosine acts by stimulating potassium channels. It is given intravenously for its short duration of action. It reduces the automation of the sinus node and slows down the conduction of excitation in the atrial node. It slows the response of the ventricles in supraventricular arrhythmias (it is the medicine of first choice). It can also be given during pregnancy.

Bradins[2]


Bradins act selectively in the sinus node, where they slow down spontaneous diastolic depolarization. Their effect is only to slow down the heart rate.

The main indication for bradin is angina pectoris.

Summary of antiarrhythmic classes[4]

Class IA: atrial fibrillation, flutter; supraventricular & ventricular tachyarrhythmias
quinidine anticholinergic (moderate)) cinchonismus (visual disturbances, tinnitus, headache); nausea; potentiates digitalis toxicity
procainamide anticholinergic (weak); relatively short half-life lupus-like syndrome in 25-30% of patients
disopryamide anticholinergic (strong) negative inotropic effect
Class IB: ventricular tachyarrhythmias (VT)
lidocaine IV only; VT and PVC high efficiency in ischemic myocardium
mexiletine orally active lidocaine analogue high potency in ischemic myocardium
phenytoin digitalis-induced arrhythmias
Class IC: life-threatening supraventricular tachyarrhythmias (SVT) + ventricular tachyarrhythmias (VT)
flecainide SVT can induce life-threatening VT
propafenone SVT & VT β-blocking and Ca2 + -channel blocking activity may exacerbate heart failure
moricizin VT activity IB

Arrhythmia treatment - summary[4]

Status Drug Comment
Sinus tachycardia Class II, IV Other related conditions may require treatment.
Atrial fibrillation/ flutter Class IA, IC, II, III, IV, digitalis, adenosine The goal is to control ventricular rate; necessary anticoagulant treatment.
Paroxysmal supraventricular tachycardia Class IA, IC, II, III, IV, adenosine
AV reentry tachycardia atropine Acute reversal.
Ventricular tachycardia Class I, II, III
Premature ventricular complexes (PVC) Class II, IV; Mg2 + salts Often benign and do not require treatment
Digitalis toxicity Class IB, Mg2 + salts; KCl


Odkazy

Související články

Externí odkazy

Zdroje

Reference

  1. Jump up to: a b c d e f
  2. Jump up to: a b c d e f g h BULTAS, Jan. Kurz Farmakoterapie kardiovaskulárních chorob. 3. LF UK, 2010
  3. Jump up to: a b c d


Kategorie:Vložené články Kategorie:Farmakologie Kategorie:Kardiologie Kategorie:Vnitřní lékařství Kategorie:Neodkladná medicína Kategorie:Vložené články

Kategorie:Vložené články Kategorie:Farmakologie Kategorie:Fyziologie Kategorie:Patofyziologie Kategorie:Vnitřní lékařství Kategorie:Kardiologie



Odkazy

Související články

Použitá literatura


Kategorie:Farmakologie Kategorie:Fyziologie Kategorie:Patofyziologie Kategorie:Endokrinologie Kategorie:Vnitřní lékařství Kategorie:Vložené články


Kardioinhibitory

__ Kardioinhibitory


Kardiotonika

__ Kardiotonika


Antiarytmika

__ Antiarytmika


Odkazy

Použitá literatura


Kategorie:Farmakologie Kategorie:Fyziologie Kategorie:Patofyziologie Kategorie:Vnitřní lékařství [[Kategorie:Kardiologie]