Disorders of lipid metabolism (detailed): Difference between revisions
Feedback

From WikiLectures

No edit summary
No edit summary
Line 9: Line 9:
  ! '''Type''' !! Occurrence (% of total hyperlipoproteinemias) !! ELFO (multiplied fraction) !! Cholesterol !! TAG !! Serum appearance !! Risk of atherosclerosis
  ! '''Type''' !! Occurrence (% of total hyperlipoproteinemias) !! ELFO (multiplied fraction) !! Cholesterol !! TAG !! Serum appearance !! Risk of atherosclerosis
  |-
  |-
  | '''I''' || 1 % || chylomikra || slightly increased || much increased || creamy || low  
  | '''I''' || 1 % || chylomicron || slightly increased || much increased || creamy || low  
  |-
  |-
  | '''IIa''' || 10–15 % || (LDL) || much increased || normal || clear || considerably high  
  | '''IIa''' || 10–15 % || (LDL) || much increased || normal || clear || considerably high  
Line 19: Line 19:
  | '''IV''' || 50–60 % || VLDL || slightly increased || slightly above the norm || cloudy || high  
  | '''IV''' || 50–60 % || VLDL || slightly increased || slightly above the norm || cloudy || high  
  |-
  |-
  | '''V''' || 1–5 % || VLDL + chylomikra || values ​​between type III and IV || much increased || creamy || low  
  | '''V''' || 1–5 % || VLDL + chylomicron || values ​​between type III and IV || much increased || creamy || low  
|}
|}


Line 29: Line 29:
  | '''Exogenous hyperlipidemia (type I) (chylomicrons)''' || '''↓↓↓''' || '''↓↓↓''' || ↓ || - || - || N || N || - || lipoprotein lipase deficiency
  | '''Exogenous hyperlipidemia (type I) (chylomicrons)''' || '''↓↓↓''' || '''↓↓↓''' || ↓ || - || - || N || N || - || lipoprotein lipase deficiency
  |-
  |-
  | '''Hypercholesterolemia (type IIa) (LDL)''' || N || N || '''↑↑''' || N || N || N || N || N || zvýšení volného LP-B  
  | '''Hypercholesterolemia (type IIa) (LDL)''' || N || N || '''↑↑''' || N || N || N || N || N || increase of free LP-B  
  |-
  |-
  | '''Combined hyperlipidemia (type IIb) (LDL+VLDL)''' || N || N || '''↑↑''' || N || N || '''↑↑''' || N || N ||zvýšení komplexu LP-B:C
  | '''Combined hyperlipidemia (type IIb) (LDL+VLDL)''' || N || N || '''↑↑''' || N || N || '''↑↑''' || N || N ||increase of the complex LP-B:C
  |-
  |-
  | '''Remnant-hyperlipidemia (familiar dysbetalipoproteinemia)''' || N || N || N || ↑|| ↑|| ↑ || N || '''↑↑''' || defect apoE-3 a E-4, increase of the complex LP-B: C: E-1 a 2
  | '''Remnant-hyperlipidemia (familiar dysbetalipoproteinemia)''' || N || N || N || ↑|| ↑|| ↑ || N || '''↑↑''' || defect apoE-3 a E-4, increase of the complex LP-B: C: E-1 a 2
Line 52: Line 52:
__TOC__
__TOC__


== Hyperlipoproteinemie ==
== Hyperlipoproteinemia ==
=== [[Primární hypercholesterolemie]] ===
=== [[Primary hypercholesterolemia]] ===
{{Edituj článek|Primární hypercholesterolemie}}{{:Primární hypercholesterolemie}}
{{Edit Article | Primary Hypercholesterolemia}} {{: Primary Hypercholesterolemia}}


=== [[Primární smíšené hyperlipidemie]] ===
=== [[Primary mixed hyperlipidemia]] ===
{{Edituj článek | Primární smíšené hyperlipidemie}}{{:Primární smíšené hyperlipidemie}}
{{Edit Article | Primary mixed hyperlipidemia}} {{: Primary mixed hyperlipidemia}}


=== Primární hypertriacylglycerolemie ===
=== Primary hypertriacylglycerolemia ===
==== Familiární hyperchylomikronemie (= familiární hyperlipoproteinemie typ I) ====
==== Familial hyperchylomicronemia (= familial hyperlipoproteinemia type I) ====
Tato vzácná choroba s autosomálně recesivní dědičností je způsobena chyběním enzymu lipoproteinové lipasy (LPL). Do stejné skupiny patří i defekt proteinového kofaktoru LPL (apoprotein C-II) nebo přítomnost inhibitoru LPL.
This rare disease with autosomal recessive inheritance is caused by the lack of the enzyme lipoprotein lipase (LPL). The defect of the LPL protein cofactor (apoprotein C-II) or the presence of an LPL inhibitor also belongs to the same group.
Klinické příznaky
Clinical signs
* abdominální bolest (75 % případů) lokalizovaná v epigastriu kolem pupku, někdy vystřelující do zad,
* abdominal pain (75% of cases) located in the epigastrium around the navel, sometimes shooting into the back,
* hepatosplenomegalie (66 %),
* hepatosplenomegaly (66%),
* eruptivní xantomy (50 %) se žlutavými kožními uzlíky,
* eruptive xanthomas (50%) with yellowish skin nodules,
* retinální lipemie: mléčný vzhled cév na očním pozadí.
* retinal lipemia: milky appearance of blood vessels on the back of the eye.


Biochemický nález: Mléčný nebo smetanový vzhled séra způsobený přetrvávající chylomikronemií. (i na lačno). Při stání v lednici (4 °C) přes noc se vytvoří na povrchu vrstva flotujících chylomikronů. Hodnoty triacylglycerolů často přes 20 mmol/l (někdy až 120 mmol/l); pokles HDL- a LDL-cholesterolu, stejně jako apoproteinů A-I, A-II, B a D. Poměr LDL-cholesterol/fosfolipidy je snížený, stejně jako HDL-cholesterol/fosfolipidy. Test na postheparinovou lipolytickou aktivitu ukazuje nulovou nebo velmi nízkou aktivitu.
Biochemical findings: Milky or creamy appearance of serum due to persistent chylomicronemia. (even on an empty stomach). When standing in a refrigerator (4 ° C) overnight, a layer of floating chylomicrons forms on the surface. Triacylglycerol values ​​often over 20 mmol / l (sometimes up to 120 mmol / l); decrease in HDL- and LDL-cholesterol, as well as apoproteins A-I, A-II, B and D. The LDL-cholesterol / phospholipids ratio is reduced, as do HDL-cholesterol / phospholipids. The post-heparin lipolytic activity test shows zero or very low activity.


Patobiochemie: Chybění lipoproteinové lipasy způsobuje nahromadění chylomiker, které nemohou být normálně odbourávány a které jsou odstraněny nepřirozeným způsobem pomocí makrofágů. U defektu apo C-II je LPL přítomna, ale není aktivní.
Pathobiochemistry: Lack of lipoprotein lipase causes the accumulation of chylomicrons that cannot be normally degraded and which are removed unnaturally by macrophages. In the apo C-II defect, LPL is present but not active.
Prognóza: Není zvýšené riziko aterosklerózy, ale je značné riziko akutní pankreatitidy (zejména u hypertriacylglycerolemie nad 20 mmol/l).
Prognosis: There is no increased risk of atherosclerosis, but there is a significant risk of acute pancreatitis (especially in hypertriacylglycerolemia above 20 mmol / l).


Léčení:
Healing:
* Striktní omezení tuku v dietě, u dospělých pod 30 g/d (lépe 15 g/d), a to ve formě rostlinného tuku bohatého na polyenové mastné kyseliny.
* Strict dietary fat restriction, for adults below 30 g / d (preferably 15 g / d), in the form of vegetable fat rich in polyenoic fatty acids.
* Dodávka vitaminů rozpustných v tucích.
* Supply of fat-soluble vitamins.
* Podávání tuků s mastnými kyselinami se středně dlouhým řetězcem C8–C12). Jsou totiž absorbovány do portální cirkulace přímo.
* Administration of fats with medium chain fatty acids (C8 – C12). They are absorbed into the portal circulation directly.
* Medikamentózní léčba hypolipidiky selhává; fibráty jsou dokonce kontraindikovány (inhibují ev reziduální aktivitu LPL).
* Drug treatment with hypolipids fails; fibrates are even contraindicated (inhibit even residual LPL activity).
    
    
==== Familiární hypertriacylglycerolemie (= typ IV = zvýšení VLDL) ====
==== Familial hypertriacylglycerolemia (= type IV = increase in VLDL) ====
Jde o familiární hypertriacylglycerolemii v monogenní formě děděnou autosomálně dominantně. Projevuje se až v dospělosti a je častou formou hyperlipoproteinemií: (0,2–0,3 % populace).
It is a familial hypertriacylglycerolemia in a monogenic form inherited by an autosomal dominant. It manifests itself only in adulthood and is a common form of hyperlipoproteinemia: (0.2-0.3% of the population).


Klinické příznaky: Charakteristická je nepřítomnost šlachových xantomů; objevuje se však slabost, ospalost, špatné trávení, často bývá obezita a abnormální glukosový toleranční test. Riziko ischemické choroby srdeční není velké (asi dvojnásobné), pokud nejsou přítomny i jiné aterogenní faktory (hypertenze, kouření apod.); bývá však zvýšené riziko ischemické choroby dolních končetin
Clinical signs: The absence of tendon xanthomas is characteristic; however, there is weakness, drowsiness, indigestion, often obesity and an abnormal glucose tolerance test. The risk of coronary heart disease is not high (about twofold) unless other atherogenic factors are present (hypertension, smoking, etc.); however, there is an increased risk of ischemic lower limb disease


Biochemický nález: zvýšení S-triacylglycerolů, často přes 10 mmol/l; ale hodnoty kolísají podle předcházející diety (2,3–11,3 mmol/l). Ve většině případů je sérum opalescentní (pro zvýšení VLDL), jen zřídka mléčně zkalené (zvýšení chylomikronů). Lehké zvýšení S-cholesterolu bývá pouze u případů, u nichž hladina S-triacylglycerolů převyšuje hodnotu 3 mmol/l. Vždy je však poměr triacylglycerolů a cholesterolu větší než 2,5. Na elektroforéze je zvýšení pre-lipoproteinu ("hyper-VLDL-emie"). Hladina apoproteinu B a A je normální; je však zvýšen apoprotein C-III. Často bývá hyperurikemie a diabetes typu 2 (non-insulindependentní) sdružený s hyperinzulinemií. (při hyperglykemii dochází též ke zvýšené glykaci ApoB, který nabývá tímto větší aterogenicitu)
Biochemical findings: increase in S-triacylglycerols, often over 10 mmol / l; but the values ​​fluctuate according to the previous diet (2.3-11.3 mmol / l). In most cases, the serum is opalescent (to increase VLDL), rarely milky (increased chylomicrons). A slight increase in S-cholesterol is usually only in cases where the level of S-triacylglycerols exceeds 3 mmol / l. However, the ratio of triacylglycerols to cholesterol is always greater than 2.5. There is an increase in pre-lipoprotein ("hyper-VLDL-emie") on electrophoresis. Apoprotein B and A levels are normal; however, apoprotein C-III is elevated. Hyperuricaemia and type 2 (non-insulin dependent) diabetes are often associated with hyperinsulinemia. (in hyperglycemia, there is also increased glycation of ApoB, which thus acquires greater atherogenicity)


Patobiochemie: Zvýšení VLDL může teoreticky vzniknout z těchto příčin:
Pathobiochemistry: Increased VLDL can theoretically arise from the following causes:
* zvýšení syntézy VLDL v játrech,
* increase in VLDL synthesis in the liver,
* snížení intravaskulárního katabolismu VLDL.
* reduction of intravascular catabolism of VLDL.


Příkladem zvýšené syntézy VLDL je hypertriacylglycerolemie navozená chronickým požíváním alkoholu. Alkohol je totiž játry oxidován přednostně (před ostatními substráty, jako jsou mastné kyseliny nebo glukóza). Hromadí se acyl-CoA, který je metabolizován na triacylglyceroly a jejich transportní formu: VLDL. Také hyperinzulinemie podněcuje syntézu VLDL. Pokles katabolismu VLDL je druhou možnou příčinou hypertriacylglycerolemie. Příčinou této poruchy může být nadbytek apoproteinu C-III, který je inhibitorem lipoproteinové lipasy, nebo deficit apoproteinu C-II, který je naopak aktivátorem LPL.
An example of increased VLDL synthesis is hypertriacylglycerolemia induced by chronic alcohol consumption. This is because alcohol is oxidized preferentially by the liver (over other substrates such as fatty acids or glucose). Acyl-CoA accumulates, which is metabolized to triacylglycerols and their transport form: VLDL. Hyperinsulinemia also stimulates VLDL synthesis. Decreased VLDL catabolism is the second possible cause of hypertriacylglycerolemia. This disorder may be due to an excess of apoprotein C-III, which is an inhibitor of lipoprotein lipase, or a deficiency of apoprotein C-II, which in turn is an activator of LPL.


Aterogenní riziko zvýšených VLDL je diskutabilní. Normální VLDL mají příliš velkou molekulu, aby mohly pronikat cévním endotelem. Ale současná přítomnost jiných rizikových faktorů, jako je hypertenze a nikotinismus, vede k poškození stěny cév, a tím se aterogenní účinek může projevit. Rovněž se předpokládá i změna ve velikosti částic (”malé VLDL”). Někteří autoři se domnívají, že pokles HDL v plazmě snižuje reverzní transport cholesterolu z periferních buněk do jater.
The atherogenic risk of elevated VLDL is debatable. Normal VLDLs have too large a molecule to penetrate the vascular endothelium. But the concomitant presence of other risk factors, such as hypertension and nicotinism, leads to damage to the vessel wall, and thus an atherogenic effect can occur. A change in particle size ("small VLDL") is also expected. Some authors believe that a decrease in plasma HDL reduces the reverse transport of cholesterol from peripheral cells to the liver.


Prognóza a léčení: Léčení spočívá hlavně ve snížení ev. nadměrné tělesné hmotnosti, dále v dietě s nízkým obsahem sacharidů a zákaz alkoholu.
Prognosis and treatment: Treatment consists mainly in reducing ev. overweight, in a low-carb diet and a ban on alcohol.
Doporučuje se užívat preparát rybího oleje, ev. nikotinová kyselina; užitečné jsou i fibráty.
It is recommended to use a fish oil preparation, ev. nicotinic acid; fibrates are also useful.


==== Familiární hyperlipoproteinemie typ V (= zvýšení VLDL + chylomikronů) ====
==== Familial hyperlipoproteinemia type V (= increase in VLDL + chylomicrons) ====
Jde o onemocnění poměrně vzácné (1:5 000); častěji u dospělých, kteří jsou obézní, mají hyperurikemii a diabetes. Vyvolávajícím faktorem může být požívání alkoholu a léků s estrogeny, stejně tak renální insuficience.
It is a relatively rare disease (1: 5,000); more often, adults who are obese have hyperuricemia and diabetes. Alcohol and estrogen use, as well as renal insufficiency, may be a causative factor.


Klinické projevy: Typ V není aterogenní; avšak je značný sklon k akutní pankreatitidě. Je sdružen s eruptivními xantomy, artritidou, suchostí v očích a ústech a emocionální labilitou.
Clinical manifestations: Type V is not atherogenic; however, there is a significant tendency for acute pancreatitis. It is associated with eruptive xanthomas, arthritis, dry eyes and mouth, and emotional lability.


Biochemický nález: Mléčně zkalené sérum pro přítomnost chylomikronů a VLDL. Na ELFO zvýšené frakce pre-ß a zvýšení frakce "na startu" (chylomikronů). S-triacylglyceroly se pohybují mezi 10–20 mmol/l (i když byly popsány hodnoty ještě vyšší). S-cholesterol je rovněž zvýšen (zejména jsou-li triacylglyceroly vysoké). Obvyklé hodnoty jsou 7, 75–13 mmol/l. Poměr VLDL-cholesterol/triacylglyceroly je menší než 0,30 (rozdíl od typu III). Podobně jako u typu IV je zvýšen apoprotein C-III a poměr C-II / C-III je snížen. Typ V bývá někdy sdružen s výskytem neobvyklé isoformy apoE-4.
Biochemical findings: Milky turbid serum for the presence of chylomicrons and VLDL. At ELFO increased pre-ß fractions and increased fraction "at the start" (chylomicrons). S-triacylglycerols range between 10-20 mmol / l (although even higher values ​​have been reported). S-cholesterol is also elevated (especially when triacylglycerols are high). Usual values ​​are 7.75-13 mmol / l. The VLDL-cholesterol / triacylglycerol ratio is less than 0.30 (difference from type III). As with type IV, apoprotein C-III is increased and the C-II / C-III ratio is decreased. Type V is sometimes associated with the occurrence of the unusual isoform apoE-4.


Patobiochemie: Příčina vzniku tohoto typu není zcela vysvětlena. Soudí se, že jde o poruchu metabolismu VLDL a chylomikronů. Aktivita postheparinové lipasy je však normální (rozdíl od typu I). Příčina současného zvýšení VLDL a chylomikronů se vysvětluje třemi možnými způsoby: (1) Zvýšená tvorba a sekrece VLDL játry vede k saturaci mechanismu odstraňujícího částice bohaté na triacylglyceroly, tedy i chylomikrony, (2) Syntéza triacylglycerolů je normální, ale je porušen mechanismus jejich vychytávání, (3) Může jít o kombinaci obou mechanismů.
Pathobiochemistry: The cause of this type is not fully explained. It is thought to be a disorder of VLDL and chylomicron metabolism. However, postheparin lipase activity is normal (unlike type I). The reason for the simultaneous increase in VLDL and chylomicrons is explained in three possible ways: (1) Increased VLDL formation and secretion by the liver leads to saturation of the triacylglycerol-rich particle removal mechanism, (2) Triacylglycerol synthesis is normal but upturned (3) It can be a combination of both mechanisms.
Forma navozená požíváním alkoholu je v některých zemích (kupř. ve Francii) velmi častá. Rozlišení typu IV od V je obtížné, stejně jako odlišení od sekundární formy navozené dietou (nadměrný přívod tuků a sacharidů).
Alcohol-related forms are very common in some countries (eg France). Distinguishing type IV from V is difficult, as is distinguishing from the secondary form induced by diet (excessive intake of fats and carbohydrates).


Prognóza a léčení: Akutní pankreatitida není častá. Základní léčení spočívá v nízkoenergetické dietě a v zákazu požívání alkoholu.
Prognosis and treatment: Acute pancreatitis is uncommon. The basic treatment consists of a low-energy diet and a ban on alcohol consumption.


== Hyperalfalipoproteinemie ==
== Hyperalphalipoproteinemia ==
=== Familiární hyper-α-lipoproteinemie ===
=== Familial hyper-α-lipoproteinemia ===
Jde o genetickou lipoproteinovou abnormalitu spojenou s výskytem dlouhověkosti v rodině (o 8–12 let oproti průměru v populaci); předpokládaná forma dědičnosti je autosomálně dominantní. Familiární formu je však nutno odlišit od formy získané (sekundární) kupř. při abúzu alkoholu nebo při užívání antikoncepčních preparátů nebo přípravků na bázi estrogenů.
It is a genetic lipoprotein abnormality associated with the occurrence of longevity in the family (8-12 years compared to the average in the population); the presumed form of heredity is autosomal dominant. However, the familial form must be distinguished from the acquired (secondary) form, e.g. in alcohol abuse or in the use of contraceptives or oestrogens.


Syndrom je charakterizován výrazným zvýšením HDL-cholesterolu (zvýšení 1-lipoproteinu na ELFO), mírné až střední zvýšení celkového cholesterolu v plasmě a normální koncentrace S-triacylglycerolů. Jsou zmnoženy HDL částice obsahující jen ApoAI, nikoliv částice obsahující jak ApoAI tak ApoAII [LpA I: A II]. Abnormalita je pravděpodobně způsobena zvýšenou syntézou apo AI. Je snížené riziko kardiovaskulárních chorob navozených aterosklerózou.
The syndrome is characterized by a marked increase in HDL-cholesterol (increase in 1-lipoprotein per ELFO), a mild to moderate increase in total plasma cholesterol, and normal concentrations of S-triacylglycerols. HDL particles containing only ApoAI are multiplied, not particles containing both ApoAI and ApoAII [LpA I: A II]. The abnormality is probably due to increased apo AI synthesis. The risk of atherosclerosis-induced cardiovascular disease is reduced.


== Hypolipoproteinemie ==
== Hypolipoproteinemia ==
=== Familiární hypo-α-lipoproteinemie ===
=== Familial hypo-α-lipoproteinemia ===
Je považována zatím za vzácnou genetickou abnormitu, pravděpodobně s autosomálně dominantní dědičností. Hladina LDL cholesterolu v plasmě je snížena pod 5ti percentilní hranici normálního rozpětí. Podobně jako hyperlipoproteinemie je i tato anomálie sdružena s dlouhověkostí, pravděpodobně pro nízkou incidenci infarktů myokardu.
It is still considered a rare genetic abnormality, probably with autosomal dominant inheritance. Plasma LDL cholesterol levels are reduced below the 5 percentile limit of the normal range. Like hyperlipoproteinemia, this anomaly is associated with longevity, probably due to the low incidence of myocardial infarction.


Biochemický nález spočívá v nízkých hodnotách LDL-cholesterolu; LDL-frakce je však přítomna vždy, na rozdíl od abetalipoproteinemie, kde chybí úplně. Koncentrace částic VLDL a HDL může být snížena nebo normální nebo i zvýšena.
The biochemical finding lies in low LDL-cholesterol levels; However, the LDL fraction is always present, unlike abetalipoproteinemia, where it is completely absent. The concentration of VLDL and HDL particles can be decreased or normal or even increased.
Defekt spočívá ve snížené tvorbě částic s ApoB (asi na polovinu); přitom katabolismus LDL je normální. Vzhledem k tomu, že LDL částice jsou produktem VLDL a pacienti s hypo--lipoproteinemií mají nízkou hladinu S-triacylglycerolů, je také u nich snížena produkce VLDL U některých jedinců byl však prokázán Apo B ve formě oddělených peptidů (truncated form), které jsou velmi rychle z plasmy vychytávány LDL-receptory příslušných buněk.
The defect consists in reduced particle formation with ApoB (about half); however, LDL catabolism is normal. Because LDL particles are a product of VLDL and patients with hypo-β-lipoproteinemia have low levels of S-triacylglycerols, VLDL production is also reduced in some individuals. the LDL receptors of the respective cells are taken up very rapidly from the plasma.


=== Abetalipoproteinemie ===
=== Abetalipoproteinemia ===
Jde o vzácnou autosomálně recesivně přenášenou chorobu, při níž chybí úplně lipoproteinové částice, obsahující ApoB. Heterozygoti nemají žádné zjevné klinické příznaky. Hladina LDL-cholesterolu je u nich snížena, ale jinak je laboratorní vyšetření normální. Naproti tomu homozygoti trpí už od kojeneckého věku malabsorpcí tuku; mají steatoreu pokud jejich dieta obsahuje tuk. Nepřibývají na váze a mají opožděný růst. Nedostanou-li suplementaci vitaminu E (ve vodě rozpustnými preparáty), objeví se progresivní degenerace CNS. Nedostatek vitaminu A a karotenu vede ke snížení ostrosti zraku a k šerosleposti. V krevním obraze se objevují erytrocyty zvláštního tvaru, tzv. acanthocyty podle rohovitých nebo ostruhovitých výběžků. Pro deficit vitaminu K mají prodloužený prothrombinový čas.
It is a rare autosomal recessively transmitted disease that completely lacks ApoB-containing lipoprotein particles. Heterozygotes have no obvious clinical signs. LDL-cholesterol levels are reduced, but otherwise laboratory tests are normal. In contrast, homozygotes have suffered from fat malabsorption since infancy; they have steatoreu if their diet contains fat. They do not gain weight and have delayed growth. If they do not receive vitamin E supplementation (water-soluble preparations), progressive CNS degeneration occurs. Lack of vitamin A and carotene leads to reduced visual acuity and night blindness. Erythrocytes of a special shape appear in the blood picture, so-called acanthocytes according to horny or spur-like protrusions. They have a prolonged prothrombin time for vitamin K deficiency.


Biochemický defekt spočívá v nemožnosti syntetizovat nebo secernovat lipoproteinové částice obsahující ApoB. Chybí proto v cirkulaci chylomikrony; je narušen transport endogenního cholesterolu k periferním buňkám cestou LDL. Je porušena tvorba kortisolu v nadledvinách při stimulaci ACTH. Cholesterol v částicích obsahujících ApoE je transportován normálně.
A biochemical defect is the inability to synthesize or secrete ApoB-containing lipoprotein particles. It is therefore absent in the circulation of the chylomicron; the transport of endogenous cholesterol to peripheral cells via the LDL is disrupted. Adrenal cortisol production is impaired during ACTH stimulation. Cholesterol in ApoE-containing particles is transported normally.


=== Hypoalfalipoproteinemie ===
=== Hypoalphalipoproteinemia ===
Stavy se sníženým HDL-cholesterolem mají zvýšené riziko aterosklerózy a z ní plynoucí kardiovaskulární onemocnění. Familiární forma se zdá mít dominantní dědičnost. Byly popsány i abnormality v polypeptidové složení apoA-I a jeden takovýto lipoprotein byl nazván podle místa popsaného případu apoA-IMilano. Pacienti jsou po většině asymptomatičtí. Bez apoA-I se nemůže tvořit HDL a bez HDL nemůže být apoC-II transportován zpět do jater v průběhu odbourávání VLDL. Důsledkem je relativní nedostatek apoC-II a zvýšená hladina VLDL.
Conditions with reduced HDL-cholesterol have an increased risk of atherosclerosis and consequent cardiovascular disease. The familial form seems to have a dominant inheritance. Abnormalities in the apoA-I polypeptide composition have also been described, and one such lipoprotein has been named according to the site of the described case of apoA-IMilano. Patients are mostly asymptomatic. Without apoA-I, HDL cannot form and without HDL, apoC-II cannot be transported back to the liver during VLDL degradation. The result is a relative deficiency of apoC-II and elevated VLDL levels.


=== Choroba ”rybích očí” ===
=== Fisheye disease ===
Onemocnění je charakterizováno zákalem rohovky. Hladina HDL-cholesterolu je snížena na 10 % hladiny normální; je snížena především HDL2, současně je snížen apoA-I. Bývá vyšší triacylglycerolemie.
The disease is characterized by corneal opacity. HDL-cholesterol levels are reduced to 10% of normal levels; HDL2 in particular is reduced, while apoA-I is reduced. There is usually a higher triacylglycerolemia.


=== Analfalipoproteinemie (Tangierská nemoc) ===
=== Analphalipoproteinemia (Tangier disease) ===
Je to vzácná choroba s autosomálně recesivní dědičností, charakterizovaná úplným chyběním HDL v plasmě. Homozygoti mají nedetekovatelné množství HDL-cholesterolu a extremně nízký apoA-I a apoA-II. Na elektroforéze lipoproteinů chybí beta-frakce. Celkový cholesterol i LDL-cholesterol jsou sníženy; je mírná hypertriacylglycerolemie. Biochemický defekt tkví pravděpodobně v abnormálně rychlém katabolismu HDL a apoA-I.
It is a rare disease with autosomal recessive inheritance, characterized by a complete lack of plasma HDL. Homozygotes have undetectable levels of HDL-cholesterol and extremely low apoA-I and apoA-II. Beta-fractions are missing from lipoprotein electrophoresis. Both total cholesterol and LDL-cholesterol are reduced; is mild hypertriacylglycerolemia. The biochemical defect probably lies in the abnormally rapid catabolism of HDL and apoA-I.


V klinickém obraze jsou nápadné žlutooranžové depozity esteru cholesterolu na sliznici hltanu a konečníku, zvětšení tonzil a adenoidních vegetací. Pacienti trpí opakující se periferní neuropatii; mají ptózu víček, svalovou atrofii a ochablé svalové reflexy. Častá je splenomegalie a trombocytopenie.
The clinical picture shows striking yellow-orange cholesterol ester deposits on the pharyngeal and rectal mucosa, enlargement of tonsils and adenoid vegetation. Patients suffer from recurrent peripheral neuropathy; they have eyelid ptosis, muscular atrophy and weak muscular reflexes. Splenomegaly and thrombocytopenia are common.


== Ateroskleróza ==
== Atherosclerosis ==
Prvním krokem v patogenezi aterosklerózy je pravděpodobně poškození endotelových buněk, na které se nalepí monocyty a T-lymfocyty; ty pak pronikají do prostoru intimy, kde se mění v makrofágy, které jsou hlavními buňkami podílejícími se na procesu aterosklerosy. Dalším krokem je pohlcování lipoproteinových částic makrofágy, především jsou to VLDL (IDL, částice s vysokým obsahem triacylglycerolů), méně pak LDL; avšak po lipoperoxidaci působením volných radikálů je pohlcování LDL urychleno. Děje se tak prostřednictvím tzv. zametacích (scavenger) receptorů, jejichž množství na povrchu buněk není regulováno podle potřeby cholesterolu v buňkách jako je tomu u LDL-receptorů popsaných Brownem a Goldsteinem. To způsobuje masivní nahromadění lipoproteinových částic uvnitř makrofágů a jejich přeměnu na pěnové buňky, které jsou podkladem ateromových plátů. Rozpoznání oxidovaných LDL makrofágovými zametacími receptory je spojeno se ztrátou lysinových zbytků v Apo B100 ev. i s vazbou s malondialdehydem a dále s kovalentní vazbou volných NH2-skupin s karbonylovými skupinami vzniklými lipoperoxidací. Oxidované LDL a fosfatidylcholin stimulují buňky hladké svaloviny, endotelu i monocyty k tvorbě chemotaktických a růstových faktorů jako PDGF (= destičkový růstový faktor), FGF (fibroblastový růstový faktor) IL1 a TNF a epidermální růstový faktor vázající heparin. Tím dochází ke zvýšené replikaci buněk hladkých svalů, což zrychluje proces aterogeneze: endotelové buňky působením oxidovaných LDL navozují produkci tkáňového faktoru a snižují syntézu inhibitoru plasminogenového aktivátoru. Tím jsou dány podmínky k urychlené agregaci krevních destiček a tvorbě trombu, zvláště v místě, kde kalcifikovaný (působením některých oxysterolů) ateromový plát praská.
The first step in the pathogenesis of atherosclerosis is probably damage to the endothelial cells to which monocytes and T-lymphocytes adhere; they then penetrate the intima space, where they transform into macrophages, which are the main cells involved in the atherosclerosis process. The next step is the uptake of lipoprotein particles by macrophages, mainly VLDL (IDL, particles with a high content of triacylglycerols), less so LDL; however, after free radical lipoperoxidation, LDL uptake is accelerated. This is done by means of so-called scavenger receptors, the amount of which on the cell surface is not regulated according to the need for cholesterol in the cells, as is the case with the LDL receptors described by Brown and Goldstein. This causes a massive accumulation of lipoprotein particles within the macrophages and their transformation into foam cells, which underlie the atheroma plaques. Recognition of oxidized LDL by macrophage sweeping receptors is associated with loss of lysine residues in Apo B100 ev. also with a bond with malondialdehyde and further with a covalent bond of free NH2-groups with carbonyl groups formed by lipoperoxidation. Oxidized LDL and phosphatidylcholine stimulate smooth muscle, endothelial and monocyte cells to produce chemotactic and growth factors such as PDGF (= platelet-derived growth factor), FGF (fibroblast growth factor) IL1 and TNF, and heparin-binding epidermal growth factor. This results in increased replication of smooth muscle cells, which accelerates the process of atherogenesis: endothelial cells induce the production of tissue factor by the action of oxidized LDL and reduce the synthesis of a plasminogen activator inhibitor. This provides the conditions for accelerated platelet aggregation and thrombus formation, especially at the site where the calcified (by some oxysterols) atheroma plaque ruptures.
Podle současných názorů je stále větší význam přikládán oxidačnímu stresu. Ten se může uplatňovat jednak při modulaci, jednak při vlastním zprostředkování účinku rizikových faktorů. Spojovacím článkem mezi kauzálními rizikovými faktory a aterosklerózou je podle některých autorů dysfunkce cévního endotelu. Lokalizovaná nebo generalizovaná dysfunkce endotelu je sdružena s tendencí k vazokonstrikci, thrombogenezi a zvýšené propustnosti stěny cévy pro lipoproteinové částice. Bývá spojována se sníženou lokální syntézou a koncentrací radikálu oxidu dusnatého a oslabením jeho antiproliferativního účinku.
Lipoperoxidace je sledem reakcí, ve kterých volné kyslíkové a dusíkové radikály odebírají vodík z molekuly polynenasycených mastných kyselin (PUFA), při čemž dojde ke změně pentadienového uspořádání dvojných vazeb na konjugované dieny. Tyto reagují s atomárním kyslíkem (1O2), nebo kyslíkovým radikálem (•O2) za vzniku peroxylového radikálu, který může atakovat další řetězce PUFA. Odebírá jim atomy vodíku za vzniku lipidových hydroperoxidů (lipoperoxidů), cyklických peroxidů a cyklických endoperoxidů. Jejich hydrolýzou vznikají toxické aldehydy – jako je malondialdehyd (MDA), 4-hydroxy-2,3-trans-nonenal, alkoxyradikály a nízkomolekulární těkavé uhlovodíky (pentan, hexan). Jedna molekula hydroxyperoxylového radikálu může atakovat řadu molekul PUFA. K terminaci dojde reakcí dvou radikálů nebo reakcí s lapači (“scavengers”). Toxické radikály pak reagují se skupinami –SH a –NH2 v bílkovinách, mění jejich chemickou strukuru a funkci. Dochází k fragmentaci apoB100, sesíťováním apo AI se snižuje jejich kapacita přijímat cholesterol a aktivovat LCAT. Oxidabilita LDL je ovlivněna množstvím a typem mastných kyselin, které jsou součástí fosfolipidů a cholesteryl esterů. Antioxidačně působí olejová kyselina; naopak prooxidační charakter mají PUFA řady n.3 i a-6 stejně jako trans-monoenové mastné kyseliny (zvláště elaidová kyselina), vznikající parciální hydrogenací rostlinných i živočišných tuků. Oxidační modifikaci podléhají nejen LDL, ale též VLDL s vysokým obsahem triacylglycerolů (Sf 400) a jejich remnantní částice. Intracelulární transport VLDL a VLDL-remnants do makrofágů prostřednictvím scavenger-receptorem B1 (SR-B1) je výrazně umocněn jejich oxidační modifikací.
Až dosud bylo rozpoznáno více než 200 rizikových faktorů pro kardiovaskulární choroby. Mezi 3 nejznámější patří: (1) Abnormální lipidy (je známo více než 15 typů lipoproteinů obsahujících cholesterol a 4 různé druhy částic bohatých na triacylglyceroly; některé jsou aterogenní), (2) Vysoký krevní tlak a (3) Kouření cigaret. K tomu pak přistupují další, jako je diabetes, nadváha, nedostatečná fyzická aktivita a řada jiných, včetně abnormalit ve faktorech účastnících se srážení krve (fibrinogen, faktor VII, inhibitory aktivátorů plasminogenu nebo nově zjištěných (homocystein, isoformy apo E 4). Důsledek působení těchto faktorů je stenóza až uzávěr arterií zásobujících životně důležité orgány (srdce, mozek) a končící akutním infarktem myokardu nebo mozkovou mrtvicí. Asi 50 % případů infarktu myokardu má za následek snížení normální komorové ejekční frakce. V těchto případech odstranění 75 % až 95 % stenózy v artérii upravuje ejekční frakci k normě u čtvrtiny pacientů a zlepšuje ji u třetiny. Když se v průběhu 3–5ti let podaří snížit hladinu cholesterolu, může se stenóza remodelovat a redukovat. U řady pacientů se tím průtok koronárním řečištěm zlepší. Provede-li se angioplastika nebo koronární "by-pass", zachrání se "hibernující" myokard. Nepředejde se však pozdějším infarktům, které se objevují asi u poloviny pacientů, protože se vytvoří nové tukové uloženiny v koronárních artériích. Tyto lipidové depozity jsou pokryty jen tenkou vrstvou endotelových buněk a představují tak velmi nestabilní lézi, která může snadno popraskat a dát příčinu vzniku masivní trombózy v oblasti bez kolaterál. Toto nebezpečí může být sníženo velmi agresivní hypolipidemickou terapií.


== Charakteristika obecného hodnocení lipidových rizikových faktorů ==
According to current opinions, more and more importance is attached to oxidative stress. This can be used both for modulation and for mediating the effect of risk factors. According to some authors, the connecting link between causal risk factors and atherosclerosis is vascular endothelial dysfunction. Localized or generalized endothelial dysfunction is associated with a tendency to vasoconstriction, thrombogenesis, and increased vascular wall permeability to lipoprotein particles. It is often associated with reduced local synthesis and concentration of nitric oxide radical and weakening of its antiproliferative effect.
Lipoperoxidation is a sequence of reactions in which free oxygen and nitrogen radicals remove hydrogen from a polyunsaturated fatty acid (PUFA) molecule, changing the pentadiene arrangement of double bonds to conjugated dienes. These react with atomic oxygen (1O2) or an oxygen radical (• O2) to form a peroxyl radical, which can attack other PUFA chains. It removes hydrogen atoms from them to form lipid hydroperoxides (lipoperoxides), cyclic peroxides and cyclic endoperoxides. Their hydrolysis produces toxic aldehydes - such as malondialdehyde (MDA), 4-hydroxy-2,3-trans-nonenal, alkoxy radicals and low molecular weight volatile hydrocarbons (pentane, hexane). One molecule of hydroxyperoxyl radical can attack a number of PUFA molecules. Termination occurs by the reaction of two radicals or by reactions with scavengers. Toxic radicals then react with the -SH and -NH2 groups in proteins, changing their chemical structure and function. Fragmentation of apoB100 occurs, and cross-linking of apo AI reduces their ability to absorb cholesterol and activate LCAT. The oxidability of LDL is affected by the amount and type of fatty acids that are part of phospholipids and cholesteryl esters. Oleic acid has an antioxidant effect; on the contrary, PUFAs of the n.3 and a-6 series have a prooxidizing character, as do trans-monoenoic fatty acids (especially elaidic acid), which result from the partial hydrogenation of vegetable and animal fats. Not only LDL but also VLDL with a high content of triacylglycerols (Sf 400) and their remnant particles are subject to oxidative modification. Intracellular transport of VLDL and VLDL remnants to macrophages via the B1 scavenger receptor (SR-B1) is significantly enhanced by their oxidative modification.
To date, more than 200 risk factors for cardiovascular disease have been identified. The 3 best known include: (1) Abnormal lipids (more than 15 types of cholesterol-containing lipoproteins and 4 different types of triacylglycerol-rich particles are known; some are atherogenic), (2) high blood pressure, and (3) cigarette smoking. This is approached by others, such as diabetes, overweight, lack of physical activity and many others, including abnormalities in factors involved in blood clotting (fibrinogen, factor VII, plasminogen activator inhibitors or newly identified ones (homocysteine, isoforms apo E 4)). About 50% of myocardial infarctions result in a reduction in the normal ventricular ejection fraction, in which 75% to 95% of the stenosis is removed. in the artery, it adjusts the ejection fraction to normal in a quarter of patients and improves it in a third.When cholesterol levels can be reduced within 3-5 years, stenosis can be remodeled and reduced, improving coronary flow in many patients. angioplasty or coronary "by-pass" saves the "hibernating" myocardium, but it does not prevent later heart attacks, which occur in about half patients as new fat deposits form in the coronary arteries. These lipid deposits are covered only by a thin layer of endothelial cells and thus represent a very unstable lesion that can easily rupture and cause massive thrombosis in the collateral-free area. This risk can be reduced by very aggressive hypolipidemic therapy.
 
Characteristics of the general assessment of lipid risk factors
=== Cholesterol ===
=== Cholesterol ===
Je dobře známo, že výskyt kardiovaskulárních onemocnění pozitivně koreluje s hladinou celkového cholesterolu a s věkem. U mužů i žen nad 70 let je dvojnásobný ve srovnání s jedinci padesátiletými: Ve framinghamské studii byla nalezena nezávislá statisticky významná korelace s cholesterolemií a výskytem ICHS. Přitom však ve velkém vyšetřovaném souboru (s hodnotami cholesterolu mezi 3,9 7,8 mmol/l) docházelo k překrývání obou skupin (s výskytem i bez ICHS). Studie ukázala, že pouze vyšetření cholesterolu pro predikci rizika je u 90 % jedinců nejisté. 20 % jedinců s cholesterolem pod 5,2 mmol/l mělo ICHS. Podle této studie nejvíce pacientů s ICHS mělo hladinu cholesterolu 5,8 mmol/l, jedinci s hodnotami mezi 3,8–5,2 měli ICHS ve 20 %, s hodnotami 5,2–7,8 ve 40 % a s hodnotami nad 7,8 mmol/l v 90 %. Je proto důležité odhalit těch 20 %, kteří jsou kandidáty na ICHS, přestože mají cholesterol 5,2 mmol/l stejně jako 40 % s hodnotami kolem 5,8 mmol/l. Diskriminačním parametrem jsou hodnoty především HDL-cholesterolu, LDL-cholesterolu a triacylglycerolů.
It is well known that the incidence of cardiovascular disease positively correlates with total cholesterol levels and age. It is twice as high in men and women over the age of 70 as it is in their 50s: An independent statistically significant correlation with cholesterolemia and coronary heart disease was found in the Framingham study. However, in the large group examined (with cholesterol values ​​between 3.9 and 7.8 mmol / l) there was an overlap between the two groups (with and without coronary heart disease). The study showed that only cholesterol testing to predict risk in 90% of individuals is uncertain. As many as 20% of individuals with cholesterol below 5.2 mmol / l had coronary heart disease. According to this study, most patients with coronary heart disease had a cholesterol level of 5.8 mmol / l, individuals with values ​​between 3.8 and 5.2 had coronary heart disease in 20%, with values ​​between 5.2 and 7.8 in 40% and with values ​​above 7 .8 mmol / l in 90%. It is therefore important to detect those 20% who are candidates for coronary heart disease, even though they have cholesterol of 5.2 mmol / l as well as 40% with values ​​around 5.8 mmol / l. The values ​​of HDL-cholesterol, LDL-cholesterol and triacylglycerols are discriminatory parameters.


=== Lipoproteiny o vysoké hustotě (HDL) ===
=== High Density Lipoproteins (HDL) ===
Vysoká hladina HDL-cholesterolu (HDL-C) je spojená s nízkým rizikem ICHS a naopak jedinci, kteří mají celkový cholesterol <5.2 mmol/l, ale HDL-C <1. 04 mmol/l mají stejně vysoké riziko ICHS jako jedinci s cholesterolem 6,7 mmol/l. Jedinci s cholesterolemií 6,7 mmol/l nejsou chráněni hladinou HDL-C 1,3–1,5 mmol/l. Z toho vyplývá, že existuje různá optimální adekvátní hladina HDL-C, která odpovídá určité hladině cholesterolu. Pro zjednodušení se doporučuje počítat poměr celk. chol. /HDL-C, který má lepší predikaci rizika zejména u seniorů než samotné hodnoty obou parametrů. Pomocí indexu celk. cholesterol/HDL-C se dá předpovědět až u 80 % jedinců ev. restenóza po léčbě na základě koronární angioplastiky. Restenóza obvykle vzniká do 6ti měsíců po zákroku. Intenzivní hypolidemická terapie trvající nejméně jeden rok může situaci zlepšit.
High levels of HDL-cholesterol (HDL-C) are associated with a low risk of coronary heart disease and, conversely, individuals who have total cholesterol <5.2 mmol / l but HDL-C <1. 04 mmol / l have the same high risk of coronary heart disease as individuals with cholesterol 6.7 mmol / l. Individuals with cholesterolemia of 6.7 mmol / l are not protected by HDL-C levels of 1.3–1.5 mmol / l. It follows that there is a different optimal adequate HDL-C level that corresponds to a certain cholesterol level. For simplicity, it is recommended to calculate the total ratio. chol. / HDL-C, which has better risk prediction, especially in the elderly, than the values ​​of both parameters alone. Using the index total. cholesterol / HDL-C can be predicted in up to 80% of individuals ev. restenosis after treatment based on coronary angioplasty. Restenosis usually occurs within 6 months after the procedure. Intensive hypolidemic therapy lasting at least one year may improve the situation.


=== Lipoproteiny o nízké hustotě (LDL) ===
=== Low Density Lipoproteins (LDL) ===
LDL-cholesterol je velmi významný rizikový faktor, ale sám o sobě, pokud jeho hladina není enormně vysoká (>7.8 mmol/l), nemá valnou cenu v predikci individuálního rizika. Ze studií vyplynulo, že kupř. vrchol incidence ICHS (tj. 40 %) je při hladině cholesterolu 5,8 mmol/l. Pro rozpoznání rizika je nutné vyšetřit ještě hodnotu HDL-cholesterolu.
LDL-cholesterol is a very important risk factor, but in itself, if its level is not enormously high (> 7.8 mmol / l), it has no general value in predicting individual risk. Studies have shown that e.g. the peak incidence of coronary heart disease (ie 40%) is at a cholesterol level of 5.8 mmol / l. To identify the risk, it is necessary to examine the level of HDL-cholesterol.


=== Triacylglyceroly (=TG) ===
=== Triacylglycerols (= TG) ===
Hladina plasmatických triacylglycerolů je dalším nezávislým faktorem rizika ICHS, zejména v souvislosti s HDL-C. Muži s hladinou TG > 1.7 mmol/l a s HDL-C < 1.04 mmol/l mají dvojnásobné riziko. Ženy s TG > 1. 7 mmol/l a HDL-C < 1.35 mmol/l mají vysoké riziko ICHS. U těchto jedinců byla též nalezena zvýšená rezistence na insulin, hypertenze a centrální typ obezity a tendence k hyperurikemii. Reaven toto seskupení nazval metabolický syndrom X. U jiné studie (PROCAM) bylo zjištěno, že u 73 jedinců s nově vzniklou ICHS mělo 37 z nich TG > 1. 7 mmol/l a HDL-C < 0.9 mmol/l. V helsinské studii (Helsinki Heart Study) léčení gembrozilem u pacientů s indexem LDL/HDL > 5 a TG > 2.3 mmol/l poklesla incidence infarktu myokardu o 71 %.
Plasma triacylglycerol levels are another independent risk factor for coronary heart disease, especially HDL-C. Men with TG levels> 1.7 mmol / l and HDL-C <1.04 mmol / l have a double risk. Women with TG> 1.7 mmol / l and HDL-C <1.35 mmol / l have a high risk of coronary heart disease. Increased insulin resistance, hypertension and central obesity, and a tendency to hyperuricemia were also found in these individuals. Reaven called this group metabolic syndrome X. Another study (PROCAM) found that in 73 individuals with newly developed coronary heart disease, 37 had TG> 1.7 mmol / l and HDL-C <0.9 mmol / l. In the Helsinki Heart Study, treatment with gembrozil in patients with LDL / HDL> 5 and TG> 2.3 mmol / l decreased the incidence of myocardial infarction by 71%.


=== Lipoproteiny o velmi nízké hustotě (VLDL) ===
=== Very Low Density Lipoproteins (VLDL) ===
Játra tvoří různé typy VLDL. Jedinci na vegetariánské dietě nebo s vyšší konzumací alkoholu, stejně jako pacienti léčení estrogeny nebo colestipolem, produkují tzv. ”puffy” VLDL (tj. větší, neaterogenní VLDL o Sf = 60–400). Většina těchto částic se vrací z cirkulace zpět do jater, nebo je transformována na částice LDL-A, které jsou jen v malém množství vychytávány makrofágy; většina se vrací zpět do jater. Naproti tomu u jedinců žijících na stravě bohaté na (nasycené) mastné kyseliny a na cholesterol, která vede k centrálnímu typu obezity, produkující malé VLDL o zvýšené denzitě (Sf =12–60), které jsou metabolizovány na malé denzní LDL-B. Obě tyto lipoproteinové částice jsou dychtivě vychytávány makrofágy ve stěně arterií. Hladina TG je považována za vhodný marker této situace (70 % případů s hypertriacylglycerolemií má zvýšené malé denzní VLDL, které jsou vysoce aterogenní). Bylo zjištěno, že když vzroste hladina TG na hodnotu 1. 1 mmol/l, začnou se objevovat malé denzní LDL-B částice; při koncentraci TG kolem 1.7 mmol/l vymizí dokonce kompletně z cirkulace normální (neaterogenní) LDL A částice a v plasmě zůstávají již jenom aterogenní LDL-B částice.
The liver is made up of different types of VLDL. Individuals on a vegetarian diet or with higher alcohol consumption, as well as patients treated with estrogens or colestipol, produce so-called "puffy" VLDL (ie larger, non-atherogenic VLDL by Sf = 60-400). Most of these particles return from the circulation back to the liver, or are transformed into LDL-A particles, which are taken up only by small amounts by macrophages; most return to the liver. In contrast, in individuals living on a diet rich in (saturated) fatty acids and cholesterol, which leads to a central type of obesity, producing small VLDL of increased density (Sf = 12–60), which are metabolized to small dense LDL-B. Both of these lipoprotein particles are eagerly taken up by macrophages in the artery wall. TG levels are considered a suitable marker of this situation (70% of cases with hypertriacylglycerolemia have elevated small dense VLDL, which are highly atherogenic). It has been found that when the TG level rises to 1.1 mmol / l, small dense LDL-B particles begin to appear; at a TG concentration of about 1.7 mmol / l, even normal (non-atherogenic) LDL A particles disappear completely from the circulation and only atherogenic LDL-B particles remain in the plasma.
Závěr: Pro odhalení vyššího rizika je třeba nejprve vyšetřit celk. cholesterol; je-li > 3.8 mmol/l a index celk. chol. /HDL-C > 4, je nutno vyšetřit ještě TG (nejsou-li > 1.7 mmol/l) nebo LDL a tím zjistit, zda se má léčit hypertriacylglycerolemie (fibráty, niacin) nebo zvýšený cholesterol (statiny).
Conclusion: In order to detect a higher risk, it is necessary to first examine the whole. cholesterol; if> 3.8 mmol / l and the index total. chol. / HDL-C> 4, it is necessary to examine TG (if not> 1.7 mmol / l) or LDL to determine whether hypertriacylglycerolemia (fibrates, niacin) or elevated cholesterol (statins) should be treated.


== Vyšetřování jednotlivých rizikových faktorů aterosklerózy ==
Investigation of individual risk factors for atherosclerosis
=== Lipoproteiny ===
=== Lipoproteins ===
==== Apolipoprotein AI (nízká hodnota) ====
==== Apolipoprotein AI (low value) ====
Je to strukturální protein především HDL částic a dále aktivátor LCAT. Nízké hodnoty jsou rizikovým faktorem ICHS.
It is a structural protein mainly of HDL particles and also an activator of LCAT. Low values ​​are a risk factor for coronary heart disease.
Fyziologické hodnoty:
Physiological values:
* muži: 1,0–1,5 g/l
* men: 1.0–1.5 g / l
* ženy: 1,1–1,6 g/l
* women: 1.1-1.6 g / l
Riziková je hodnota pod 0,9 g/l
A value below 0.9 g / l is risky


==== Apolipoprotein B ====
==== Apolipoprotein B ====
Fyziologické hodnoty (dospělí):
Physiological values ​​(adults):
* muži: 1,05 ± 0,25 g/l
* men: 1.05 ± 0.25 g / l
* ženy: 0,95 ± 0,25 g/l
* women: 0.95 ± 0.25 g / l


{| class="wikitable"
{| class="wikitable"
  |+ Tab. 3: Hodnocení apoB ve vztahu k riziku aterosklerózy
  |+ Tab. 3: Evaluation of apoB in relation to the risk of atherosclerosis
  |-  
  |-  
  ! hodnota !! Riziko
  ! value !! Risk
  |-
  |-
  | do 0,9 g/l || velmi nízké
  | up to 0,9 g/l || very low
  |-
  |-
  | 0,9–1,20 g/l || nízké
  | 0,9–1,20 g/l || low
  |-
  |-
  | 1,20–1,40 g/l || střední
  | 1,20–1,40 g/l || medium
  |-
  |-
  | nad 1,40 g/l || vysoké
  | over 1,40 g/l || high
|}
|}


==== Apolipoprotein E, isoformy ====
==== Apolipoprotein E, isoforms ====
ApoE je hlavní složkou VLDL a chylomikronových zbytků. Gen pro apoE lokalizovaný na chromosomu 19 3 alely (apoE-2, apoE-3, apoE-4), které dávají vznik šesti možným variantám (3 homozygotní, 3 heterozygotní). Rozdíl jednotlivých isoforem je dán záměnou cysteinu za arginin v polypeptidovém řetězci; apoE-2 2 zbytky cysteinu, apoE3 1 cystein a 1 arginin, apoE-4 žádný cystein a 2 argininy. To ovlivňuje afinitu lipoproteinových částic, které je obsahují vůči specifickým receptorům jednak v játrech, jednak vůči receptorům extrahepatálním. Homozygoti mající apoE-2/2 se vyznačují sníženou clearancí VLDL a chylomikronových zbytků z krevní cirkulace prostřednictvím jater, protože apoE-2 se špatně váže na apoE receptor. Kromě toho jedinci s apoE-2 mají sníženou lipolytickou konverzi VLDL na LDL, takže v plasmě mají méně LDL a více VLDL. Vzniká u nich tzv. dysbetalipoproteinemie (Typ III dle Fredricksona). Jedinci s apoE-4 se vyznačují zvýšenou konverzí VLDL na LDL, což vede ke snížení VLDL v plasmě a naopak ke zvýšení LDL.
ApoE is a major component of VLDL and chylomicron residues. The apoE gene located on chromosome 19 has 3 alleles (apoE-2, apoE-3, apoE-4), which give rise to six possible variants (3 homozygous, 3 heterozygous). The difference between the individual isoforms is due to the exchange of cysteine ​​for arginine in the polypeptide chain; apoE-2 has 2 cysteine ​​residues, apoE3 1 cysteine ​​and 1 arginine, apoE-4 no cysteine ​​and 2 arginines. This affects the affinity of the lipoprotein particles that contain them for specific receptors in both the liver and extrahepatic receptors. Homozygotes having apoE-2/2 are characterized by reduced clearance of VLDL and chylomicron residues from the bloodstream through the liver because apoE-2 binds poorly to the apoE receptor. In addition, individuals with apoE-2 have reduced lipolytic conversion of VLDL to LDL, so they have less LDL and more VLDL in plasma. They develop so-called dysbetalipoproteinemia (Type III according to Fredrickson). Individuals with apoE-4 are characterized by increased conversion of VLDL to LDL, which leads to a decrease in plasma VLDL and, conversely, to an increase in LDL.
 
==== Lipoprotein Lp(a) ====
Jako nezávislý faktor je považována zvýšená koncentrace specifického lipoproteinu Lp(a) v séru. Jde o lipoproteinovou třídu s molekulovou hmotností vyšší než 5,4 miliónů, pohybující se na elektroforéze v 1-oblasti; při ultracentrifugaci se nalézá v HDL-frakci a je označována jako "sinking pre-". Hlavním apolipoproteinem je apo B100; Lp(a) má však ještě specifický antigen: apoprotein(a) =apo(a). Apo(a) je složen ze 7 "kringle" (preclíkový) domén, které mají vysokou homologii s "kringle"-doménami plasminogenu, dále pak z 1 proteasové domény. Podobnost s plasminogenem vede k možnosti obsazení receptorových míst na fibrinu a k inhibici fibrinolýzy; Lp(a) má tedy dvojí rizikový efekt: působí aterogenně (přítomnost apo B-100) a antifibrinolyticky [přítomnost apo(a)]. Apo(a) má 6 geneticky podmíněných isoforem: F, B, S1, S2, S3, S4, které se liší molekulovou hmotností; bylo popsáno však ještě 11 dalších polymorfních forem. Apo(a) je metabolizován jiným způsobem než jiné lipoproteiny obsahující apoB. Je možno ho považovat za reaktant akutní fáze, protože se přechodně zvyšuje kupř. po větších chirurgických zákrocích nebo při akutním infarktu myokardu. Přechodný vzestup byl také zaznamenán u nestabilní anginy pectoris (bez zvýšení CRP). Fyziologická funkce není známa. Spekuluje se, že jeho schopnost vázat se na fibrin umožňuje dodávku cholesterolových molekul do organizujícího se trombu.
Fyziologické hodnoty Lp(a) (dospělí): 0,10–0,2 g/l
Riziková hodnota : > 0,30 g/l
Poznámka: Výše hladiny celé molekuly Lp(a) nemusí odpovídat stupni rizika aterosklerózy (podmíněno různými genetickými variantami). Větší výpovědní hodnotu má stanovení ”volného” apolipoproteinu (a). K vazbě Apo (a) na částici LDL dochází až extracelulárně, takže v krevní cirkulaci se nalézá jak kompletní Lp(a) tak volný Apo(a).


==== LDL-cholesterol (vypočtený) (LDL-C) ====
==== Lipoprotein Lp (a) ====
Výpočet dle Planella, který zahrnuje ještě stanovení ApoB, má lepší výpovědní hodnotu než vzorec dle Friedewalda.
Elevated serum concentrations of the specific lipoprotein Lp (a) are considered an independent factor. It is a lipoprotein class with a molecular weight greater than 5.4 million, moving on 1-region electrophoresis; in ultracentrifugation it is found in the HDL-fraction and is referred to as "sinking pre-". The major apolipoprotein is apo B100; However, Lp (a) still has a specific antigen: apoprotein (a)  = apo (a). Apo (a) is composed of 7 "kringle" domains that have high homology to the "kringle" domains of plasminogen, as well as 1 protease domain. The similarity with plasminogen leads to the possibility of occupying receptor sites on fibrin and to inhibiting fibrinolysis; Thus, Lp (a) has a double risk effect: it is atherogenic (presence of apo B-100) and antifibrinolytically [presence of apo (a)]. Apo (a) has 6 genetically determined isoforms: F, B, S1, S2, S3, S4, which differ in molecular weight; however, 11 other polymorphic forms have been described. Apo (a) is metabolized differently than other apoB-containing lipoproteins. It can be considered as an acute phase reactant because it temporarily increases e.g. after major surgery or acute myocardial infarction. A transient increase was also observed in unstable angina pectoris (without an increase in CRP). The physiological function is unknown. It is speculated that its ability to bind to fibrin allows the delivery of cholesterol molecules to the organizing thrombus.
LDL-C (mmol/l) = 0,41. celk. cholesterol (mmol/l) – 0,32. triacylglyceroly (mmol/l) + 1, 70. ApoB (g/l) – 0, 27
Physiological values ​​of Lp (a) (adults): 0.10–0.2 g / l
Risk value:> 0.30 g / l
Note: The level of the whole Lp (a) molecule may not correspond to the degree of risk of atherosclerosis (due to different genetic variants). The determination of "free" apolipoprotein (a) is of greater significance. The binding of Apo (a) to the LDL particle occurs extracellularly, so that both complete Lp (a) and free Apo (a) are found in the bloodstream.


==== LDL-cholesterol (calculated) (LDL-C) ====
The Planell calculation, which also includes the ApoB determination, has a better explanatory value than the Friedewald formula.
LDL-C (mmol / l) = 0.41. total. cholesterol (mmol / l) - 0.32. triacylglycerols (mmol / l) + 1.70. ApoB (g / l) - 0.27
{| class="wikitable"
{| class="wikitable"
  |+ Tab. 3: Hodnocení cholesterolemie
  |+ Tab. 3: Evaluation of cholesterolemia
  |-  
  |-  
  ! Normolipidemici !! Typ IIa !! Typ IIb !! Typ IV
  ! Normolipidemic !! Type IIa !! Type IIb !! Type IV
  |-
  |-
  | 3,19±0,56 || 6,46±2,21 || 5,27±0,93 || 3,40±0,48
  | 3,19±0,56 || 6,46±2,21 || 5,27±0,93 || 3,40±0,48
  |}
  |}


(Hodí se zejména pro rozlišení Fredriksonova typu IIb od typu IV (”cut-off”=4, 13 mmol/l)
(It is particularly suitable for distinguishing Fredrikson type IIb from type IV(”cut-off”=4, 13 mmol/l)


{| class="wikitable"
{| class="wikitable"
  |+ Tab. 3:  Zvýšení lipidů a lipoproteinů ve vztahu k riziku aterosklerózy (podle Assmanna)
  |+ Tab. 3:  Increase in lipids and lipoproteins in relation to the risk of atherosclerosis (according to Assmann)
  |-  
  |-  
  ! Parametr (mmol/l) !! Žádné riziko !! Podezřelé rozmezí (nutnost léčení podle klinického nálezu) !! Vysoké riziko (nutno léčit)
  ! Parameter (mmol/l) !! No risk !! Suspicious range (need for treatment according to clinical finding) !! High risk (must be treated)
  |-
  |-
  | S-triacylglyceroly|| < 1,7 || 1,7–2,3 || > 2,3
  | S-triacylglycerols|| < 1,7 || 1,7–2,3 || > 2,3
  |-
  |-
  | S-cholesterol|| < 5,7 || 5,7–6,7 || > 6,7
  | S-cholesterol|| < 5,7 || 5,7–6,7 || > 6,7
Line 223: Line 223:
  | S-LDL-cholesterol || < 3,9 || 3,9–4,9 || > 4,9
  | S-LDL-cholesterol || < 3,9 || 3,9–4,9 || > 4,9
  |-
  |-
  | S-HDL-cholesterol muži || > 1,4 || 0,9–1,4 || < 0,9
  | S-HDL-cholesterol men || > 1,4 || 0,9–1,4 || < 0,9
  |-
  |-
  | S-HDL-cholesterol ženy || > 1,7 || 1,2–1,7 || < 1,2
  | S-HDL-cholesterol women || > 1,7 || 1,2–1,7 || < 1,2
|}
|}


{| class="wikitable"
{| class="wikitable"
  |+ Tab. 3:  Hodnoty S-cholesterolu (v mmol/l) jako rizikového faktoru v různých  věkových skupinách (podle NIH)
  |+ Tab. 3:  S-cholesterol values ​​(in mmol / l) as a risk factor in different age groups (according to NIH)
  |-  
  |-  
  ! Věková skupina !! Střední riziko !! Vysoké riziko
  !Age group !! Medium risk !! High risk
  |-
  |-
  | 2–19 || > 4,4 || > 4,78
  | 2–19 || > 4,4 || > 4,78
Line 243: Line 243:


{| class="wikitable"
{| class="wikitable"
  |+ Tab. 3: Hodnoty rizikových faktorů (podle Roseneu a van Biervlieta)
  |+ Tab. 3: Values ​​of risk factors (according to Roseneu and van Biervliet)
  |-  
  |-  
  ! Parametr !! Kojenci !! Dospělí
  ! Parameter !! Infants !! Adults
  |-
  |-
  | S-cholesterol (mmol/l)|| > 4,13 || > 6,2
  | S-cholesterol (mmol/l)|| > 4,13 || > 6,2
Line 258: Line 258:
|}
|}


=== Nelipoproteinové biochemické rizikové faktory ===
=== Non - lipoprotein biochemical risk factors ===
==== Homocystein ====
==== Homocystein ====
Homocystein je důležitý (ústřední) metabolit metabolismu methioninu. Nenachází se v přijímané potravě, ale vzniká z methioninu při jeho metabolizaci na S-adenosylmethionin. Homocystein se pak může metabolizovat čtyřmi možnými způsoby: V tzv. remethylační dráze získává CH3-skupinu z betainu nebo
Homocysteine ​​is an important (central) metabolite of methionine metabolism. It is not found in the diet, but is formed from methionine during its metabolism to S-adenosylmethionine. Homocysteine ​​can then be metabolized in four possible ways: In the so-called remethylation pathway, it obtains a CH3 group from betaine or
5-methyltetrahydrofolátu za opětného vzniku methioninu. Ten s ATP dává S-adenosylmethionin, který je bezprostředním donorem methylových skupin kupř. pro syntézu purinového jádra. V transsulfurační dráze (to je v případě, když je methioninu nadbytek nebo když má být syntetizován cystein) se homocystein kondenzuje se serinem za vzniku cystathionu, který se hydrolyzuje na ketobutyrát a cystein. Čtvrtá cesta je export intracelulárního homocysteinu do extracelulárního prostředí (když produkce převažuje nad utilizací v buňce). V průběhu 24 hodin se dostává z buněk do plasmy asi 1, 2 mmol. U cévních chorob bylo pozorováno zvýšení jak homocysteinu volného (asi 5 - 10 %) tak vázaného (na albumin) a také jako homocysteinylcysteinu. Zvýšení plasmatického homocysteinu se ukazuje být samostatným rizikem (asi trojnásobným) zejména pro periferní vaskulární choroby a cerebrovaskulární choroby, méně pro onemocnění koronárních arterií.
5-methyltetrahydrofolate to form methionine. The one with ATP gives S-adenosylmethionine, which is the immediate donor of methyl groups e.g. for purine core synthesis. In the transulfuration pathway (i.e., when there is an excess of methionine or when cysteine ​​is to be synthesized), homocysteine ​​condenses with serine to form cystathione, which hydrolyzes to ketobutyrate and cysteine. The fourth pathway is the export of intracellular homocysteine ​​to the extracellular environment (when production outweighs utilization in the cell). About 1.2 mmol enters the plasma from the cells within 24 hours. An increase in both homocysteine ​​free (about 5-10%) and bound (to albumin) and also as homocysteinylcysteine ​​was observed in vascular diseases. An increase in plasma homocysteine ​​appears to be a separate risk (approximately 3-fold), especially for peripheral vascular diseases and cerebrovascular diseases, less so for coronary artery disease.
Dědičný defekt enzymů metabolismu homocysteinu, jako je cystathionin-synthasa nebo 10-methylen-tetrahydrofolátreduktáza, vede ke zvýšení homocysteinu. Podobně i nedostatek některých vitaminů jako je listová kyselina, vitamin B12 a pyridoxalfosfát (derivát vitaminu B6) způsobují hyperhomocysteinurii. Rovněž kouření a pití kávy ji podněcuje.
An inherited defect in homocysteine ​​metabolism enzymes, such as cystathionine synthase or 10-methylene tetrahydrofolate reductase, leads to an increase in homocysteine. Similarly, deficiencies in some vitamins such as folic acid, vitamin B12 and pyridoxal phosphate (a derivative of vitamin B6) cause hyperhomocysteinuria. Smoking and drinking coffee also encourage her.
Patogeneza poškození cév navozené zvýšením homocysteinu není vyjasněna. Homocystein může zhoršovat funkci endotelových buněk, dokonce vede k jejímu poškození; navozuje také zvýšené srážení krve. Ovlivňuje normální protrombolytickou a antikoagulační aktivitu endotelových buněk.
The pathogenesis of homocysteine-induced vascular damage is unclear. Homocysteine ​​can impair endothelial cell function, even leading to endothelial cell damage; it also induces increased blood clotting. It affects the normal prothrombolytic and anticoagulant activity of endothelial cells.
Fyziologické hodnoty: 11,58 ± 4,48 μmol/l (10,2–14,8 μmol/l) (12–15 μmol/l) (se stoupajícím věkem se hodnoty zvyšují).
Physiological values: 11.58 ± 4.48 μmol / l (10.2–14.8 μmol / l) (12–15 μmol / l) (values ​​increase with increasing age).
Patologické zvýšení (v μmol/l):
Pathological increase (in μmol / l):
* mírné zvýšení.......... 16–31
* slight increase .......... 16-31
* střední zvýšení........ 32–100
* medium increase ........ 32–100
* výrazné zvýšení....... > 100
* significant increase .......> 100
* ''pacienti s aortokoronárním bypassem (Hyánek, 1996) 14,2 ± 4,9 (ženy), 16,0 ± 5,3 (muži)''
* '' patients with coronary artery bypass grafting (Hyánek, 1996) 14.2 ± 4.9 (women), 16.0 ± 5.3 (men) ''
* ''mozková mrtvice: 15,7 ± 5,0''
* '' stroke: 15.7 ± 5.0 ''
Příčinou může být:
This can be caused by:
* dědičný defekt enzymů:
* hereditary enzyme defect:
:* heterozygoti deficience cystathionin-β-synthasy (incidnece 1–2 %)
: * heterozygous cystathionine-β-synthase deficiency (incidence 1-2%)
:* snížená aktivita methylentetrahydrofolátreduktázy
: * decreased methylenetetrahydrofolate reductase activity
:* snížená aktivita methyltetrahydrofolát-homocystein-methyltransferasy
: * reduced methyltetrahydrofolate-homocysteine-methyltransferase activity
:* defekty v regulaci metabolismu homocysteinu přeměnou na S-adenosylmethionin
: * defects in the regulation of homocysteine ​​metabolism by conversion to S-adenosylmethionine
Zvýšení u jiných patologických stavů:
Increase in other pathological conditions:
* klasická homocystinurie (typ I) (deficience cystathionin-β-reduktázy): 258 μmol/l (a více) (Typ II: defekt v tvorbě methylkobalaminu; typ III: deficience methylentetrahydrofolátreduktázy)
* classic homocystinuria (type I) (cystathionine-β-reductase deficiency): 258 μmol / l (and more) (Type II: methylcobalamin defect; type III: methylenetetrahydrofolate reductase deficiency)
* deficit vitaminu B12
* vitamin B12 deficiency
* deficit listové kyseliny
* folic acid deficiency
* jiné (psoriáza, leukemie, solidní tumory, hypertyreóza)
* other (psoriasis, leukemia, solid tumors, hyperthyroidism)
* zvýšená tvorba kreatinu (kreatininu)
* increased creatine production
* snížení renálních funkcí
* decreased renal function
Zvýšený homocystein představuje nezávislý rizikový faktor pro předčasný výskyt kardiovaskulárního onemocnění (zvýšení rizika o 20–30 %).
Elevated homocysteine ​​is an independent risk factor for premature cardiovascular disease (risk increase of 20-30%).
Hladinu homocysteinu snižuje příjem vitaminů (listová kyselina, vitamin B12, pyridoxin), dále zvýšená konzumace zeleniny a ovoce. Proto u některých případu hyperhomocystinemie pomáhá suplementace folátem (5mg/den; cave: epilepsie).
The level of homocysteine ​​is reduced by the intake of vitamins (folic acid, vitamin B12, pyridoxine), as well as increased consumption of vegetables and fruits. Therefore, in some cases of hyperhomocystinemia, folate supplementation helps (5 mg / day; cave: epilepsy).
Poznámka: Pro stanovení je velice důležité, co nejdříve oddělit plasmu od krvinek nebo serum od koagula, nejlépe odebírat do ledem chlazené odběrky a takto urychleně dopravit do laboratoře k centrifugaci (nejpozději do 1 hodiny). Jinak dochází k výraznému artificálnímu zvýšení.
Note: It is very important for the determination to separate the plasma from the blood cells or the serum from the clot as soon as possible, preferably to take in ice-cooled samples and thus quickly transported to the laboratory for centrifugation (within 1 hour at the latest). Otherwise, there is a significant artificial increase.


==== Zátěžový test s L-methioninem (dle Hyánka) ====
==== Stress test with L-methionine (according to Hyánek) ====
Princip: po podání L-methioninu (7 g) se sleduje jeho zvýšení za 6 hod. Výraznější zvýšení svědčí pro deficit aktivity dihydrofolátreduktázy a pro riziko poškození cévního endotelu homocysteinem.
Principle: after administration of L-methionine (7 g) its increase is monitored in 6 hours. A more significant increase indicates a deficit of dihydrofolate reductase activity and a risk of vascular endothelial damage by homocysteine.


==== Fibrinogen ====
==== Fibrinogen ====
Zvýšená hodnota plasmatického lipoproteinu představuje další možné riziko ICHS.
Elevated plasma lipoprotein poses another potential risk for coronary heart disease.


==== Tkáňový aktivátor plasminogenu (tPA) ====
==== Tissue plasminogen activator (tPA) ====
Představuje další možný rizikový faktor infarktu myokardu (P. Ridker)
Represents another possible risk factor for myocardial infarction (P. Ridker)
Hodnoty:
Values:
* kontrolní: 9,2 g/l
* control: 9.2 g / l
* vysoké riziko: nad 12,2 g/l (trojnásobné riziko)
* high risk: over 12.2 g / l (triple risk)
* nízké riziko: pod 5,2 g/l
* low risk: below 5.2 g / l


==== Mikroalbuminurie ====
==== Mikroalbuminurie ====
Mikroalbuminurie je definována jako abnormální vylučování albuminu močí, a to v množství mezi 20–200 g/min (tj. 30–300 g/den). Je sdružena s řadou rizikových kardiovaskulárních faktorů jako je:
Microalbuminuria is defined as abnormal urinary albumin excretion at between 20-200 /g / min (ie 30-300 g / day). It is associated with a number of cardiovascular risk factors such as:
* zvýšený krevní tlak a změněný denní profil krevního tlaku
* increased blood pressure and altered daily blood pressure profile
* insulinová rezistence a senzitivita na NaCl
* insulin resistance and sensitivity to NaCl
* aterogenní lipidový profil
* atherogenic lipid profile
* dysfunkce systémového endotelu
* systemic endothelial dysfunction
* zvýšená aktivita renin-angiotensinového systému
* increased activity of the renin-angiotensin system
Mikroalbuminurie je markerem časného poškození orgánů při esenciální hypertenzi jako je hypertrofie levé komory, poškození cév retiny, ztluštěná stěna karotid a glomerulární hyperfiltrace. Vyšetření mikroalbuminurie a její sledování je proto hodnotným a relativně levným laboratorním markerem (prediktorem morbidity i mortality) kardiovaskulárních onemocnění.
Microalbuminuria is a marker of early organ damage in essential hypertension such as left ventricular hypertrophy, retinal vessel damage, thickened carotid wall, and glomerular hyperfiltration. Examination of microalbuminuria and its monitoring is therefore a valuable and relatively inexpensive laboratory marker (predictor of morbidity and mortality) of cardiovascular diseases.
 
== Mnohočetný metabolický syndrom podle Reavena (= ”syndrom X”) ==
Jde o asociaci několika rizikových faktorů, jejímž podkladem je zřejmě insulinová rezistence sdružená s obezitou, hypertenzí, hypertriacylglycerolemií, hyperglykemií, ke kterým přibyly další jako hyperurikemie, hirzutismus, dále poruchy krevního srážení a fibrinolýzy, mikroalbuminurie a vznik tzv. malých LDL částic; důležité je, že všechny tyto známky se spojují s vývojem předčasné aterosklerózy. Metabolický syndrom a jeho příčiny však nelze chápat jako projev opotřebení nebo stárnutí, ale je založen na geneticky disponovaném terénu


;Leptin
== Reaven Multiple Metabolic Syndrome (= "Syndrome X") ==
Obezita je rizikovým faktorem pro řadu civilizačních chorob.. Leptin je proteohormon o Mr= 16 000 patřící do rodiny hematopoetických cytokinů, který je produktem OB–genu na chromosomu 7q31.3 a který hraje klíčovou úlohu v regulaci tělesné hmotnosti. Je produkován diferencovanými adipocyty. Hlavním faktorem určujícím hladinu cirkulujícího leptinu je množství tukové tkáně. Koncentrace stoupá s indexem tělesné hmotnosti BMI = [hmotnost(v kg)]/[výška(v m)]2 nebo s podílem tělesného tuku. I malé variace v množství tělesného tuku mají za následek výrazné rozdíly v hladině leptinu – od 0,03 g/l u anorektických pacientů až po hodnoty  100 g/l u extrémně obézních jedinců. Hladina leptinu vykazuje závislost na věku (až do 20ti let).
It is an association of several risk factors, probably based on insulin resistance associated with obesity, hypertension, hypertriacylglycerolemia, hyperglycemia, which were added by others such as hyperuricemia, hirsutism, blood clotting and fibrinolysis disorders, microalbuminuria and the formation of so-called small; Importantly, all of these signs are associated with the development of premature atherosclerosis. However, the metabolic syndrome and its causes cannot be understood as a manifestation of wear and tear or aging, but it is based on genetically modified terrain
Biologický účinek leptinu je zprostředkován leptinovým receptorem (OB–R), který patří do rodiny receptorů cytokinů třídy I. Leptin působí snížení příjmu potravy (u pokusných zvířat) a zvýšený výdej energie, včetně thermogeneze. Kromě toho leptin ovlivňuje řadu endokrinních systémů. Tento účinek je zprostředkován působením na hypothalamus, a to na produkci neuropeptidu Y (NPY) – leptin potlačuje expresi a sekreci NPY, který je stimulátorem příjmu potravy a reguluje řadu hypofyzárních hormonů. Velmi zjednodušeně řečeno, leptin představuje signál z tukové tkáně, kterým je informován organismus o zásobě energie uskladněné v tukových depotách. (Blum, 1997).


== Choroby a stavy sdružené se sekundární hyperlipoproteinemií ==
Leptin
Geneticky podmíněné primární hyperlipoproteinemie je nutno odlišit od stavů, u nichž se může hyperlipoproteinemie vyskytnout druhotně. Zvýšená hladina lipidů obvykle vymizí, když se upraví základní choroba. Představují asi 40 % všech hyperlipoproteinemií. Jejich léčení spočívá především v léčení primárního onemocnění. Patří sem hyperlipoproteinemie u těchto stavů:
Obesity is a risk factor for many diseases of civilization. Leptin is a proteohormone of Mr = 16,000 belonging to the family of hematopoietic cytokines, which is a product of the OB gene on chromosome 7q31.3 and which plays a key role in the regulation of body weight. It is produced by differentiated adipocytes. The main factor determining the level of circulating leptin is the amount of adipose tissue. Concentration increases with body mass index BMI = [weight (in kg)] / [height (in m)] 2 or with body fat content. Even small variations in body fat result in significant differences in leptin levels - from 0.03 g / l in anorexic patients to  100 g / l in extremely obese individuals. Leptin levels depend on age (up to 20 years).
The biological effect of leptin is mediated by the leptin receptor (OB-R), which belongs to the class I family of cytokine receptors. Leptin causes a reduction in food intake (in experimental animals) and increased energy expenditure, including thermogenesis. In addition, leptin affects a number of endocrine systems. This effect is mediated by the action on the hypothalamus, namely the production of neuropeptide Y (NPY) - leptin suppresses the expression and secretion of NPY, which is a stimulator of food intake and regulates a number of pituitary hormones. In very simple terms, leptin is a signal from adipose tissue that informs the body of the energy stores stored in fat depots. (Blum, 1997).


;Obezita
== Diseases and conditions associated with secondary hyperlipoproteinemia ==
Asi 30–50 % pacientů s otylostí má zároveň hyperlipoproteinemii charakterizovanou biochemickými změnami jako u typu IV. Tyto vymizí po léčení nízkoenergetickou dietou a po zákazu alkoholu.
Genetically determined primary hyperlipoproteinemia must be distinguished from conditions in which hyperlipoproteinemia may occur secondarily. Elevated lipid levels usually disappear when the underlying disease is corrected. They represent about 40% of all hyperlipoproteinemias. Their treatment consists mainly in the treatment of the primary disease. These include hyperlipoproteinemia in the following conditions:


;Alkoholismus
;Obesity
U některých "predisponovaných" pacientů i mírné, ale pravidelné požívání alkoholu navozuje změny v lipidovém spektru odpovídající typu IV (nadměrná tvorba VLDL pro nahromadění acyl-CoA). U chronických alkoholiků je stav vystupňován a dochází nejen k hyper-VLDLemii, ale také k hyperchylomikronemii (lipidový profil jako u typu V). Zároveň je i nebezpečí výskytu akutní pankreatitidy.
About 30-50% of patients with obesity also have hyperlipoproteinemia characterized by biochemical changes as in type IV. These disappear after treatment with a low-energy diet and after a ban on alcohol.
;Alcoholism
In some "predisposed" patients, even mild but regular alcohol consumption induces changes in the lipid spectrum corresponding to type IV (excessive VLDL production for acyl-CoA accumulation). In chronic alcoholics, the condition is exacerbated and there is not only hyper-VLDLemia, but also hyperchylomicronemia (lipid profile as in type V). At the same time, there is a risk of acute pancreatitis.


U Zieveho syndromu, který je možno nalézt u chronických, špatně živených alkoholiků, je hypertriacylglycerolemie provázena poruchami jaterní funkce se žloutenkou a hemolytickou anemií.
In Zieve's syndrome, which can be found in chronic, malnourished alcoholics, hypertriacylglycerolemia is accompanied by liver dysfunction with jaundice and hemolytic anemia.


;Hepatopatie
;Hepatopathy
Akutní hepatitida, chronická hepatitida a akutní jaterní selhání se vyznačují výrazným zvýšením triacylglycerolu při normální nebo snížené hladině cholesterolu. U akutní hepatitidy lipidový profil odpovídá většinou typu IV, u chronické hepatitidy spíše typu IIb. Proces je podmíněn syntézou abnormální LDL-frakce označované jako lipoprotein X (LP-X), který se objevuje zejména u případů s cholestázou. Zvýšení triacylglycerolů je obvykle spojeno se sníženou produkcí LCAT v játrech. U případů jaterní cirhózy s vyšší hladinou neesterifikovaných mastných kyselin, ale s normální aktivitou LCAT jsou triacylglyceroly v plazmě normální. Aktivita LCAT koreluje také s hladinou esterů cholesterolu; jejich snížení, které je pro difúzní hepatocelulární poškození typické, je podmíněno právě nízkou aktivitou LCAT. U hepatocelulárního karcinomu bývá asi u čtvrtiny dospělých pacientů hypercholesterolemie. Také při akutní intermitentní porfyrii bývá hypercholesterolemie (zvýšení LDL).
Acute hepatitis, chronic hepatitis and acute liver failure are characterized by a marked increase in triacylglycerol at normal or reduced cholesterol levels. In acute hepatitis, the lipid profile corresponds mostly to type IV, in chronic hepatitis rather to type IIb. The process is conditioned by the synthesis of an abnormal LDL-fraction called lipoprotein X (LP-X), which occurs especially in cases with cholestasis. Elevated triacylglycerols are usually associated with decreased hepatic LCAT production. In cases of liver cirrhosis with higher levels of non-esterified fatty acids but with normal LCAT activity, plasma triacylglycerols are normal. LCAT activity also correlates with cholesterol ester levels; their reduction, which is typical for diffuse hepatocellular damage, is due to the low activity of LCAT. In hepatocellular carcinoma, about a quarter of adult patients have hypercholesterolemia. Hypercholesterolemia (increased LDL) is also common in acute intermittent porphyria.


;Cholestáza
;Cholestasis
U intrahepatální i extrahepatální cholestázy bývá výrazná hypercholesterolemie (zvýšení 2–5 krát), a to především zvýšení "volného" cholesterolu. V séru je prokazatelný LP-X-lipoprotein jako citlivý indikátor cholestázy (na rozdíl od jiných lipoproteinů putuje při ELFO v agarovém gelu ke katodě). Kromě případů biliární cirhózy a hepatocelulárního karcinomu je hladina LP-X vyšší u extrahepatální obstrukce než u intrahepatální.
In both intrahepatic and extrahepatic cholestasis, there is a marked hypercholesterolemia (increase 2–5 times), especially an increase in "free" cholesterol. LP-X-lipoprotein has been shown to be a sensitive indicator of cholestasis in serum (unlike other lipoproteins, it travels to the cathode in an agar gel ELFO). Except for cases of biliary cirrhosis and hepatocellular carcinoma, LP-X levels are higher in extrahepatic obstruction than in intrahepatic obstruction.


;Diabetes mellitus
;Diabetes mellitus
U 40% diabetiků je hyperlipoproteinemie typu IV; typ IIb je méně častý a typ V vzácný. Klasická "diabetická hyperlipemie", tj. především zvýšení VLDL (triacylglyceroly: 11, 3–20 mmol/l, probíhající pod obrazem těžké smíšené hyperlipoproteinemie s eruptivními xantomy a lipaemia retinalis a s projevy ketózy, se nachází pouze u neléčených diabetiků typu I (insulindependentní). Nedostatek insulinu vede k mobilizaci triacylglycerolu v tukové tkáni; nadměrné množství uvolněných mastných kyselin se metabolizuje v játrech na ketolátky a část na triacylglycerol, který vstupuje do VLDL. Později však produkce apoproteinu v játrech vázne a klesá aktivita lipoproteinové lipasy, a tím se zhoršuje odbourávání VLDL. V obou případech to vede k hyper-VLDL-emii.
In 40% of diabetics, hyperlipoproteinemia is type IV; type IIb is less common and type V is rare. Classical "diabetic hyperlipemia", ie mainly an increase in VLDL (triacylglycerols: 11, 3–20 mmol / l, occurring under the image of severe mixed hyperlipoproteinemia with eruptive xanthomas and lipaemia retinalis and manifestations of ketosis, is found only in untreated type I diabetics (insulin-independent) Insulin deficiency leads to the mobilization of triacylglycerol in adipose tissue, excessive amounts of released fatty acids are metabolized in the liver to ketone bodies and part to triacylglycerol, which enters VLDL. In both cases, this leads to hyper-VLDL.


;Nefropatie
;Nephropathy
Nefrotický syndrom (bez ohledu na jeho etiologii) se vyznačuje výraznou hypercholesterolemií. Zvýšení triacylglycerolů je variabilní. U mírnějších forem má hyperlipidemie charakter typu IIa, u těžších je to typ IIb. Tedy především zvýšení LDL, které roste úměrně s klesající hladinou albuminu. Když poklesne albumin pod 10 g/l, zvyšují se i VLDL, někdy extrémně (s odpovídajícím vzrůstem triacylglycerolů). VLDL u nefrotického syndromu jsou bohaté na estery cholesterolu. Mechanismus vzniku hyperlipoproteinemie u nefrotického syndromu není zcela jasný; snad je to adaptivní proteosyntéza plazmatických bílkovin (a tedy i lipoproteinů) na výrazné ztráty bílkovin močí, aby byl zachován onkotický tlak krevního oběhu. Výskyt infarktů myokardu u dospělých pacientů je zvýšen. U pacientů s chronickým renálním selháním (asi v 70 % případů) je hyperlipoproteinemie typu IV s poklesem HDL. V 90 % případů pacientů s transplantacemi ledvin se objevuje hyperlipoproteinemie typu II a nebo IIb.
Nephrotic syndrome (regardless of its etiology) is characterized by severe hypercholesterolemia. The increase in triacylglycerols is variable. In milder forms, hyperlipidemia is type IIa, in more severe ones it is type IIb. That is, mainly the increase in LDL, which increases in proportion to the decreasing albumin level. When albumin drops below 10 g / l, VLDL also increases, sometimes extremely (with a corresponding increase in triacylglycerols). VLDL in nephrotic syndrome are rich in cholesterol esters. The mechanism of hyperlipoproteinemia in nephrotic syndrome is not entirely clear; perhaps it is the adaptive proteosynthesis of plasma proteins (and therefore lipoproteins) to significant urinary protein loss in order to maintain circulatory oncotic pressure. The incidence of myocardial infarction in adult patients is increased. In patients with chronic renal failure (approximately 70%), there is type IV hyperlipoproteinemia with decreased HDL. Type II a or IIb hyperlipoproteinemia occurs in 90% of renal transplant patients.


;Endokrinopatie
;Endocrinopathy
Bývají velmi často spojeny s poruchami v metabolismu lipidů.
They are very often associated with disorders in lipid metabolism.


;Hypotyroidismus
;Hypothyroidism
Při hypotyroidismu je téměř vždy hypercholesterolemie (typ IIa nebo IIb) se zvýšením LDL a HDL. VLDL bývají normální. Je snížen katabolismus apoproteinu B, a tak porušena přeměna "VLDL-remnants".
In hypothyroidism, there is almost always hypercholesterolemia (type IIa or IIb) with increased LDL and HDL. VLDLs tend to be normal. The catabolism of apoprotein B is reduced, thus disrupting the conversion of "VLDL-remnants".


;Steroidní hyperlipoproteinemie
;Steroid hyperlipoproteinemia
Při podávání glukogenních kortikoidů nebo při Cushingově syndromu bývá přítomna hypercholesterolemie i hypertriacylglycerolemie (zvýšení cholesterolu vždy převažuje). Jsou zvýšeny VLDL i LDL (endogenní nebo smíšená hyperlipoproteinemie); typ IIb podle Fredricksonova schématu.
Hypercholesterolemia and hypertriacylglycerolemia are often present when glucogenic corticoids or Cushing's syndrome are administered (cholesterol elevations always predominate). Both VLDL and LDL (endogenous or mixed hyperlipoproteinemia) are elevated; type IIb according to Fredrickson's scheme.


;Estrogenní hyperlipoproteinemie
;Estrogenic hyperlipoproteinemia
Je známo, že estrogeny zvyšují hladinu HDL (premenopauzální období u žen), což je připisováno antiaterogenní ochraně žen (na rozdíl od mužů). Podávání estrogenů (např. formou antikoncepčních pilulek) zvyšuje VLDL, zvláště v kombinaci s nortestosteronovými deriváty.
Estrogens are known to increase HDL levels (premenopausal period in women), which is attributed to the antiatherogenic protection of women (unlike men). Estrogen administration (eg in the form of birth control pills) increases VLDL, especially in combination with nortestosterone derivatives.


;Hypopituitarismus
;Hypopituitarism
Při hypopituitarismu se často vyskytuje hyperlipoproteinemie (zvýšení triacylglycerolů, menší zvýšení cholesterolu). Deficit růstového hormonu vede ke snížené oxidaci mastných kyselin v játrech a ke ketogenezi se současnou zvýšenou syntézou triacylglycerolů a VLDL.
Hyperlipoproteinemia (increased triacylglycerols, less increased cholesterol) often occurs in hypopituitarism. Growth hormone deficiency leads to reduced fatty acid oxidation in the liver and to ketogenesis with concomitant increased synthesis of triacylglycerols and VLDL.


;Akromegalie
;Acromegaly
Hladina triacylglycerolů a cholesterolu je značně variabilní. Mírná forma bývá spojena s lehkým zvýšením triacylglycerolů a s mírným poklesem cholesterolu. Obvykle je i zvýšená rezistence na insulin.
The level of triacylglycerols and cholesterol is highly variable. The mild form is associated with a slight increase in triacylglycerols and a slight decrease in cholesterol. Insulin resistance is usually increased.


;Stresová hyperlipoproteinemie
;Stress hyperlipoproteinemia
Stresové situace jsou provázeny mobilizací neesterifikovných mastných kyselin z tukové tkáně. Zvýšená hladina triacylglycerolů (endogenní hypertriacylglycerolemie) je způsobena jak zvýšenou sekrecí VLDL z jater, tak porušeným katabolismem. Hladina cholesterolu a LDL je snížena. Stresová hyperlipoproteinemie se vyskytuje u stavů, jako je akutní infarkt myokardu, spontánní nebo emociální stres, rozsáhlé popáleniny, sepse navozená zvláště gramnegativní flórou.
Stressful situations are accompanied by the mobilization of non-esterifying fatty acids from adipose tissue. Elevated levels of triacylglycerols (endogenous hypertriacylglycerolemia) are caused by both increased secretion of VLDL from the liver and impaired catabolism. Cholesterol and LDL levels are reduced. Stress hyperlipoproteinemia occurs in conditions such as acute myocardial infarction, spontaneous or emotional stress, extensive burns, sepsis induced by particularly gram-negative flora.


;Anorexia nervosa
;Anorexia nervosa
Asi u poloviny pacientů se objevuje hypercholesterolemie; hladina triacylglycerolů je většinou normální. Snad je to způsobeno sníženým fekálním vylučováním metabolitů cholesterolu a omezeným transportem cholesterolu do jater.
About half of the patients develop hypercholesterolemia; triacylglycerol levels are usually normal. Perhaps this is due to reduced fecal excretion of cholesterol metabolites and limited transport of cholesterol to the liver.


;Feochromocytom
;Pheochromocytoma
Někdy bývá hyperlipoproteinemie typu IV.
Sometimes there is a type IV hyperlipoproteinemia.


;Iatrogenní hyperlipoproteinemie
;Iatrogenic hyperlipoproteinemia
Podávání některých léků může navodit hyperlipoproteinemii:
Administration of some drugs may induce hyperlipoproteinemia:
* thiazidové preparáty zvyšují hlavně VLDL (typ IV),
* thiazide preparations increase mainly VLDL (type IV),
* kortikosteroidy při dlouhodobé aplikaci způsobují hyperlipoproteinemii typu IV, při vysokých dávkách typu I,
* corticosteroids cause long-term hyperlipoproteinemia type IV, at high doses type I,
* blokátory (propranolol) někdy způsobují hyper-VLDLemii (typ IV).
* blockers (propranolol) sometimes cause hyper-VLDLemia (type IV).


;Exogenní hypercholesterolemie
;Exogenous hypercholesterolemia
Nadměrný přívod cholesterolu v potravě vede k hypercholesterolemii. Byl popsán případ pacientky, která denně pravidelně jedla 8–12 vaječných žloutků (asi 3, 5 g cholesterolu). Hladina cholesterolu se u ní pohybovala kolem 24 mmol/l. Při normální dietě hladina postupně klesala.
Excessive cholesterol in the diet leads to hypercholesterolemia. A case was reported of a patient who ate 8-12 egg yolks (about 3.5 g of cholesterol) on a regular basis. Her cholesterol level was around 24 mmol / l. During a normal diet, the level gradually decreased.


;Monoklonální gamapatie
;Monoclonal gammopathy
U pacientů s paraproteinemií se může nalézt endogenní hyperlipoproteinemie (VLDL-remnants). U IgA myelomu však bývá též i hypocholesterolemie (snížení LDL). Nacházejí se i komplexy VLDL a LDL s abnormálními imunoglobuliny. Klinickými projevy hyperlipoproteinemií u paraproteinemií bývají dlaňové xantomy (příznačné).
Endogenous hyperlipoproteinemia (VLDL remnants) may be found in patients with paraproteinemia. However, hypocholesterolemia (LDL reduction) is also common in IgA myeloma. There are also complexes of VLDL and LDL with abnormal immunoglobulins. Clinical manifestations of hyperlipoproteinemias in paraproteinemias are usually palm xanthomas (characteristic).


;Glykogenózy
;Glycogenosis
Endogenní nebo smíšená hyperlipoproteinemie je charakteristická pro hepatorenální glykogenózu (Gierkeho choroba). Je pravděpodobně navozena hypoglykemií, která vede k hyperinzulinismu a zvýšenému odbourávání tuků z tukové tkáně. Léčení proto spočívá v zabránění hypoglykemických stavů častějším podáváním stravy. Při jiných jaterních glykogenózách (typ III a typ IV) mohou být hyperlipoproteinemie.
Endogenous or mixed hyperlipoproteinemia is characteristic of hepatorenal glycogenosis (Gierke's disease). It is probably caused by hypoglycaemia, which leads to hyperinsulinism and increased fat breakdown from adipose tissue. Therefore, treatment consists in preventing hypoglycemic conditions by feeding more frequently. There may be hyperlipoproteinemia in other hepatic glycogenoses (type III and type IV).


;Hyperurikemie
;Hyperuricemia
Bývá často spojena s hyperlipoproteinémií typu IV.
It is often associated with type IV hyperlipoproteinemia.


== Poruchy z ukládání lipidů ==
== Poruchy z ukládání lipidů ==
Kromě poruch metabolismu lipidů, vyznačujících se hlavně změnami v cirkulujících lipoproteinech, nacházíme poruchy, jejichž místo leží v přeměně lipidů v buňkách (enzymové defekty v lyzosomech). Můžeme je dělit na metabolické poruchy katabolismu cholesterolu a na poruchy v přeměně sfingolipidů.
Kromě poruch metabolismu lipidů, vyznačujících se hlavně změnami v cirkulujících lipoproteinech, nacházíme poruchy, jejichž místo leží v přeměně lipidů v buňkách (enzymové defekty v lyzosomech). Můžeme je dělit na metabolické poruchy katabolismu cholesterolu a na poruchy v přeměně sfingolipidů.


=== Poruchy z ukládání cholesterolu ===
=== Cholesterol storage disorders ===
==== Wolmanova choroba ====
==== Wolman's disease ====
Jde o vzácnou dědičnou poruchu metabolismu s autosomálně recesivním přenosem, při níž dochází k ukládání esterů cholesterolu a triacylglycerolů v buňkách jater, ledviny, nadledviny, hematopoetického systému a tenkého střeva. Je to způsobeno chyběním lyzosomální kyselé lipasy. Choroba se projevuje až několik týdnů po narození (v šesti měsících): neprospívání, hepatosplenomegalie, opakované zvracení, trvalé průjmy se steatoreou, bilaterální kalcifikace nadledvin. Průběh je většinou fatální. Potvrzení diagnózy je histochemické (deficit lyzosomální kyselé lipasy, hromadění esterů cholesterolu v lyzosomech buněk postižených tkání.
It is a rare inherited metabolic disorder with autosomal recessive transmission, in which cholesterol and triacylglycerol esters are deposited in the cells of the liver, kidney, adrenal gland, hematopoietic system and small intestine. This is due to the lack of lysosomal acid lipase. The disease manifests itself only a few weeks after birth (at six months): failure to thrive, hepatosplenomegaly, recurrent vomiting, persistent diarrhea with steatorrhea, bilateral adrenal calcification. The course is usually fatal. Confirmation of the diagnosis is histochemical (lysosomal acid lipase deficiency, accumulation of cholesterol esters in the lysosomes of affected tissue cells).


==== Choroba z ukládání esterů cholesterolu ====
==== Cholesterol ester storage disease ====
Je to vlastně mírnější obdoba Wolmanovy choroby. Deficit kyselé lyzosomální lipasy není úplný (aktivita 1–20 % normálu); klinické projevy se objevují mnohem později (pacienti se dožívají i 40 let), hepatomegalie a rozsah ukládání esterů cholesterolu v buňkách není tak velký. Soudí se, že u obou chorob jde o alelickou mutaci postihující stejný genetický lokus.
It's actually a milder equivalent of Wolman's disease. Acid lysosomal lipase deficiency is incomplete (activity 1–20% of normal); clinical manifestations appear much later (patients live to be 40 years old), hepatomegaly and the extent of cholesterol ester storage in cells is not so great. Both diseases are thought to be an allelic mutation affecting the same genetic locus.


==== Familiární deficit lecithin: cholesterolacyltransferasy (LCAT) ====
==== Familial lecithin: cholesterol acyltransferase (LCAT) deficiency ====
Jde o deficit klíčového enzymu uskutečňujícího esterifikaci cholesterolu. Je to velmi vzácná dědičná porucha s autosomálně recesivním přenosem. V séru jsou zvýšeny triacylglyceroly a hladina cholesterolu je variabilní; ale chybějí estery cholesterolu (3–30 % oproti 75–70 %). Dochází k ukládání lipidů na rohovce (mléčné zkalení), v glomerulární membráně (proteinurie), v kostní dřeni a slezině (sea blue histiocyty), v erytrocytech (anémie), v cévní stěně (ateromy). Jsou změny i v plazmatických lipoproteinech: triacylglycerolemie 2,26–11,3 mmol/l. Většina lipoproteinových tříd má abnormální charakter (jiná velikost, jiná ELFO pohyblivost atd.).
It is a deficiency of a key enzyme that performs cholesterol esterification. It is a very rare inherited disorder with autosomal recessive transmission. Serum triacylglycerols are elevated and cholesterol levels are variable; but cholesterol esters are missing (3-30% vs. 75-70%). Lipids are deposited on the cornea (milky clouding), in the glomerular membrane (proteinuria), in the bone marrow and spleen (sea blue histiocytes), in erythrocytes (anemia), in the vascular wall (atheromas). There are also changes in plasma lipoproteins: triacylglycerolemia 2.26–11.3 mmol / l. Most lipoprotein classes are abnormal (different size, different ELFO motility, etc.).


=== Sfingolipidózy ===
=== Sphingolipidosis ===
Jde o skupinu dědičných poruch metabolismu membránových lipidů, a to sfingolipidů, které se projevují hromaděním těchto lipidů v příslušných orgánech. Jejich schematický přehled je uveden v tabulce.
It is a group of inherited disorders of membrane lipid metabolism, namely sphingolipids, which are manifested by the accumulation of these lipids in the relevant organs. Their schematic overview is given in the table.


{| class="wikitable"
{| class="wikitable"
  |+ Tab. přehled nejdůležitějších sfingolipidóz
  |+ Tab. An overview of the most important sphingolipidoses
  |-  
  |-  
  ! Název !! Klinické projevy !! Místo poškození !! Enzymový defekt
  ! Name !! Clinical manifestations !! Place of damage !! Enzyme defect
  |-
  |-
  | Gangliosidóza (Normanova-Landigova choroba) || mentální retardace, degenerace nervového systému, hepatosplenomegalie, třešňově červená makula na očním pozadí || mozek, játra, slezina, kosti || gangliosido-β-galaktosidasa
  | Gangliosidosis (Norman-Landig disease) || mental retardation, degeneration of the nervous system, hepatosplenomegaly, cherry red macula on the ocular background || brain, liver, spleen, bones || ganglioside-β-galactosidase
  |-
  |-
  | Tayova-Sachsova choroba choroba || mentální retardace, degenerace nervového systému || mozek, nervový systém || hexózaminidáza A
  | Tay-Sachs disease disease || mental retardation, degeneration of the nervous system brain, nervous system || hexosaminidase A
  |-
  |-
  | Glukocerebrosidóza (Gaucherova choroba - 3 typy) || mentální retardace, degenerace nervového systému, hepatosplenomealie, eroze na kortexu dlouhých kostí a pánve (patologické zlomeniny) || játra, slezina, nervový systém, kosti || cerebrosyl-β-glukosidasa
  | Glucocerebrosidosis (Gaucher disease - 3 types) || mental retardation, degeneration of the nervous system, hepatosplenomealia, erosion of the cortex of the long bones and pelvis (pathological fractures) || liver, spleen, nervous system, bones cerebrosyl β-glucosidase
  |-
  |-
  | Galaktosylceramidóza (Krabbeho choroba) || mentální retardace, degenerace centrálního a periferního nervového systému (globoidní tělíska) || mozek, nervový systém || cerebrosyl-β-galaktosidasa
  | Galactosylceramidosis (Krabbe disease) || mental retardation, degeneration of the central and peripheral nervous system (globoid bodies) || brain, nervous system || cerebrosyl β-galactosidase
  |-
  |-
  | Galaktosylceramidóza (Scholzova choroba) || mentální retardace, degenerace centrálního a periferního nervového systému || mozek, nervový systém || arylsulfatasa A  
  | Galactosylceramidosis (Scholz 's disease) || mental retardation, degeneration of the central and peripheral nervous system brain, nervous system || arylsulfatase A
  |-
  | -
  |Ceramidtrihexosidóza (Fabryho choroba) || difuzní angiokeratom, poškození rohovky || krevní cévy, kůže, ledvina || α-galaktosidasa A
  Ceramide trihexosidosis (Fabry disease) || diffuse angiokeratoma, corneal damage || blood vessels, skin, kidney || α-galactosidase A
  |-
  | -
  | Sfingomyelinóza (Niemannova–Pickova choroba, 5 forem: A E) || hepatosplenomegalie, mentální retardace, degenerace nervového systému, třešňově červená makula na očním pozadí, "pěnové" buňky v kostní dřeni || játra, slezina, mozek, kostní dřeň || sfingomyelinasa
  | Sphingomyelinosis (Niemann-Pick disease, 5 forms: A to E) || hepatosplenomegaly, mental retardation, degeneration of the nervous system, cherry red macula on the ocular background, "foam" cells in the bone marrow || liver, spleen, brain, bone marrow || sphingomyelinase
  |-
  | -
  | Ceramidóza (Farberova choroba) || mentální retardace, degenerace nervového systému || kůže, klouby, mozek || ceramidasa
  | Ceramidosis (Farber 's disease) || mental retardation, degeneration of the nervous system skin, joints, brain || ceramidase
|}<noinclude>
|}<noinclude>
== Odkazy ==
== Links ==
=== Související články ===
=== Related articles ===
* [[Poruchy lipidového metabolizmu|Poruchy lipidového metabolizmu (obecně)]]
* [[Lipid metabolism disorders | Lipid metabolism disorders (general)]]
* [[Lipoproteiny]]
* [[Lipoproteins]]
* [[Lipoproteiny (klinika)]]
* [[Lipoproteins (clinic)]]
* [[Hypolipidemická léčba]]
* [[Hypolipidemic treatment]]
* [[Ateroskleróza]]
* [[Atherosclerosis]]
* [[Obezita]]
* [[Obesity]]


=== Zdroj ===
=== Resources ===
* {{Citace|typ = web|příjmení1 = Pastor|jméno1 = Jan|název = Langenbeck's medical web page
* {{Cite|type = web|surname1 = Pastor|name1 = Jan|source_name = Langenbeck's medical web page
|rok = 2006
|year = 2006
|citováno = 10.11.2010
|cited = 10.11.2010
|url = https://langenbeck.webs.com/interna.htm}}
|url = https://langenbeck.webs.com/interna.htm}}
* {{Citace
* {{Cite
| typ = kniha
| type = book
| příjmení1 = Masopust
| surname1 = Masopust
| jméno1 = Jaroslav
| name1 = Jaroslav
| příjmení2 = PRŮŠA
| surname2 = PRŮŠA
| jméno2 = Richard
| name2 = Richard
| titul = Patobiochemie metabolických drah
| title = Patobiochemie metabolických drah
| vydavatel = Univerzita Karlova
| publisher = Univerzita Karlova
| vydání = 2
| edition = 2
| rok = 2004
| year = 2004
| rozsah = 208
| pages = 208  
| strany =
| isbn = -
| isbn = -
}}
}}
=== Reference ===
=== References ===
<references />
<references />
</noinclude>
</noinclude>
[[Kategorie:Endokrinologie]]
[[Kategorie:Vnitřní lékařství]]
[[Kategorie:Patobiochemie]]
[[Kategorie:Patofyziologie]]

Revision as of 23:21, 29 December 2021

Under construction / Forgotten

This article was marked by its author as Under construction, but the last edit is older than 30 days. If you want to edit this page, please try to contact its author first (you fill find him in the history). Watch the discussion as well. If the author will not continue in work, remove the template {{Under construction}} and edit the page.

Last update: Wednesday, 29 Dec 2021 at 11.21 pm.

Template:Sjednotit

Lipid transport disorders

The classification of hyperlipoproteinemias was based in the past mainly on the "Fredrickson's electrophoretic scheme", which allowed the hyperlipoproteinemia to be divided into six groups marked with Roman numerals I to V, with type II having subgroups IIa and IIb. This classification is currently being withdrawn. Fredrickson's lipoprotein type is not a nosological entity; in the same individual it may vary depending on lifestyle or medication (eg type V may switch to type IV and then to type IIb). Similarly, a genetically well-defined disease may manifest as a different lipoprotein type in different individuals (e.g., familial combined hyperlipidemia may manifest as electrophoretic type IIb, but also as type IV or IIa).

Fredrickson's classification of hyperlipoproteinemias
Type Occurrence (% of total hyperlipoproteinemias) ELFO (multiplied fraction) Cholesterol TAG Serum appearance Risk of atherosclerosis
I 1 % chylomicron slightly increased much increased creamy low
IIa 10–15 % (LDL) much increased normal clear considerably high
IIb 22–25 % VLDL, LDL increased slightly above the norm opalescent considerably high
III 1–5 % LDL, VLDL atypical increased increased cloudy considerably high
IV 50–60 % VLDL slightly increased slightly above the norm cloudy high
V 1–5 % VLDL + chylomicron values ​​between type III and IV much increased creamy low
Apolipoproteins in disorders of lipoprotein metabolism
Syndrome A-I A-II B C-I C-II C-III D E
Exogenous hyperlipidemia (type I) (chylomicrons) ↓↓↓ ↓↓↓ - - N N - lipoprotein lipase deficiency
Hypercholesterolemia (type IIa) (LDL) N N ↑↑ N N N N N increase of free LP-B
Combined hyperlipidemia (type IIb) (LDL+VLDL) N N ↑↑ N N ↑↑ N N increase of the complex LP-B:C
Remnant-hyperlipidemia (familiar dysbetalipoproteinemia) N N N N ↑↑ defect apoE-3 a E-4, increase of the complex LP-B: C: E-1 a 2
Endogenous hyperlipidemia (type IV) (VLDL) N N N N ↑↑ N N
Mixed hyperlipidemia (type V), (VLDL+chylomicrons) N N ↑↑↑ ↑↑↑ ↑↑ N ↑↑ increase of the complex LP-B: C: E
Analfalipoproteinemia (Tangier disease) missing ↓↓↓ N-↓ N ↓↓ N-↓
Abetalipoproteinemia ↓↓ ↓↓ missing ↓↓ ↓↓↓ N
Hypobetalipoproteinemia N N ↓↓↓ N N - N
Lecithin deficiency: cholesterol acyl transferase (lamellar hyperlipoproteinemia) ↓↓ ↓↓ - - - N -

The current classification of primary hyperlipoproteinemias and hypolipoproteinemias is based on the underlying etiopathogenetic cause based on genetic changes.

Hyperlipoproteinemia

Primary hypercholesterolemia

Primary Hypercholesterolemia

Primary mixed hyperlipidemia

Primary mixed hyperlipidemia

It is the most common genetic disorder of lipoprotein metabolism . The frequency is estimated at 1: 100 to 1:50. Heredity is usually marked as autosomal recessive.

Clinical manifestations
It often occurs in obese and diabetics . There are no xanthomas or arcus corneae; pathological manifestations of atherosklerosis (coronary heart disease, lower limb ischemia) do not begin until adulthood.
Biochemical findings
An abnormal lipid finding is usually not detected until adulthood. The serum is clear or opalescent. VLDL (pre-β-lipoproteins), also LDL (β-lipoproteins) and apoprotein B are elevated, [cholesterol]] is between 10-15 mmol / l, triacylglycerols are between 2.26-5.65 mmol / l. HDL-cholesterol and apoprotein C-II and C-III are usually reduced. Lipoprotein electrophoresis shows familial combined hyperlipoproteinemia such as type IIb, IV or even IIa or V. Sometimes another fraction of pre-α (pre-α1 and pre-α2) is evident, caused by an increase in lipoprotein (a) [Lp (a)]. Chylomicrons are not detected on an empty stomach.
Pathobiochemistry
The cause is thought to be an abnormally high synthesis of Apo B in the liver, accompanied by increased VLDL production.
Prognosis
A common complication is myocardial infarction before the age of 60; an association with diabetes and obesity is common.
Healing
  • Above all, lifestyle modification: weight reduction, diet with lower fat content (preference for fat with unsaturated fatty acids instead of saturated ones) - reduction of cholesterol intake.
  • Drug therapy only in patients for whom lifestyle modification has not been shown to be helpful; fibrates, are most often used , ev.resins, (e.g. Lipanthyl® or Gevilon® in combination with Colestide®); sometimes nicotic acid helps.

Familial dysbetalipoproteinemia (ie type III hyperlipoproteinemia, increase in β-VLDL)

Dysbetalipoproteinemia (type III hyperlipidemia) is a rare inherited disorder characterized by a defect in the removal of chylomicron and VLDL residues. The underlying disorder is homozygosity for the mutant form of apo E (apo E 2 ), which binds poorly to liver receptors. As a result, chylomicron residues accumulate as well as cholesterol-rich VLDL (β-VLDL)[1].

Clinical manifestations
  • Various forms of xanthomas dominate :
    • tuberous xanthomas (in 80%),
    • palmar xanthomas (70%) - are characteristic,
    • tendon xanthomas (30%),
    • eruptive xanthomas (rare).
  • Hyperuricaemia and diabetes are observed in about half of patients.
  • Early atherosclerotic changes first affect the lower limbs and coronary arteries (in men before the age of 40, in women before the age of 50).
Biochemical findings
Opalescent serum; increased both cholesterol and triacylglycerols: S-cholesterol usually above 7.5 mmol / l, sometimes up to 25 mmol / l, S-triacylglycerols 2-10 mmol / l, rarely 20 mmol / l.

Characteristic appearance of ELFO-lipoproteins: "broad" β-fraction (merging pre-β and β fractions). There is an abnormal fraction between VLDL and LDL (so-called β-VLDL) on the polyacrylamide gel. An increase in the cholesterol / triacylglycerol ratio to> 0.30, a decrease in HDL and LDL cholesterol and, conversely, an increase in VLDL, IDL and chylomicron residues are characteristic.

Primary hypertriacylglycerolemia

Familial hyperchylomicronemia (= familial hyperlipoproteinemia type I)

This rare disease with autosomal recessive inheritance is caused by the lack of the enzyme lipoprotein lipase (LPL). The defect of the LPL protein cofactor (apoprotein C-II) or the presence of an LPL inhibitor also belongs to the same group. Clinical signs

  • abdominal pain (75% of cases) located in the epigastrium around the navel, sometimes shooting into the back,
  • hepatosplenomegaly (66%),
  • eruptive xanthomas (50%) with yellowish skin nodules,
  • retinal lipemia: milky appearance of blood vessels on the back of the eye.

Biochemical findings: Milky or creamy appearance of serum due to persistent chylomicronemia. (even on an empty stomach). When standing in a refrigerator (4 ° C) overnight, a layer of floating chylomicrons forms on the surface. Triacylglycerol values ​​often over 20 mmol / l (sometimes up to 120 mmol / l); decrease in HDL- and LDL-cholesterol, as well as apoproteins A-I, A-II, B and D. The LDL-cholesterol / phospholipids ratio is reduced, as do HDL-cholesterol / phospholipids. The post-heparin lipolytic activity test shows zero or very low activity.

Pathobiochemistry: Lack of lipoprotein lipase causes the accumulation of chylomicrons that cannot be normally degraded and which are removed unnaturally by macrophages. In the apo C-II defect, LPL is present but not active. Prognosis: There is no increased risk of atherosclerosis, but there is a significant risk of acute pancreatitis (especially in hypertriacylglycerolemia above 20 mmol / l).

Healing:

  • Strict dietary fat restriction, for adults below 30 g / d (preferably 15 g / d), in the form of vegetable fat rich in polyenoic fatty acids.
  • Supply of fat-soluble vitamins.
  • Administration of fats with medium chain fatty acids (C8 – C12). They are absorbed into the portal circulation directly.
  • Drug treatment with hypolipids fails; fibrates are even contraindicated (inhibit even residual LPL activity).

Familial hypertriacylglycerolemia (= type IV = increase in VLDL)

It is a familial hypertriacylglycerolemia in a monogenic form inherited by an autosomal dominant. It manifests itself only in adulthood and is a common form of hyperlipoproteinemia: (0.2-0.3% of the population).

Clinical signs: The absence of tendon xanthomas is characteristic; however, there is weakness, drowsiness, indigestion, often obesity and an abnormal glucose tolerance test. The risk of coronary heart disease is not high (about twofold) unless other atherogenic factors are present (hypertension, smoking, etc.); however, there is an increased risk of ischemic lower limb disease

Biochemical findings: increase in S-triacylglycerols, often over 10 mmol / l; but the values ​​fluctuate according to the previous diet (2.3-11.3 mmol / l). In most cases, the serum is opalescent (to increase VLDL), rarely milky (increased chylomicrons). A slight increase in S-cholesterol is usually only in cases where the level of S-triacylglycerols exceeds 3 mmol / l. However, the ratio of triacylglycerols to cholesterol is always greater than 2.5. There is an increase in pre-lipoprotein ("hyper-VLDL-emie") on electrophoresis. Apoprotein B and A levels are normal; however, apoprotein C-III is elevated. Hyperuricaemia and type 2 (non-insulin dependent) diabetes are often associated with hyperinsulinemia. (in hyperglycemia, there is also increased glycation of ApoB, which thus acquires greater atherogenicity)

Pathobiochemistry: Increased VLDL can theoretically arise from the following causes:

  • increase in VLDL synthesis in the liver,
  • reduction of intravascular catabolism of VLDL.

An example of increased VLDL synthesis is hypertriacylglycerolemia induced by chronic alcohol consumption. This is because alcohol is oxidized preferentially by the liver (over other substrates such as fatty acids or glucose). Acyl-CoA accumulates, which is metabolized to triacylglycerols and their transport form: VLDL. Hyperinsulinemia also stimulates VLDL synthesis. Decreased VLDL catabolism is the second possible cause of hypertriacylglycerolemia. This disorder may be due to an excess of apoprotein C-III, which is an inhibitor of lipoprotein lipase, or a deficiency of apoprotein C-II, which in turn is an activator of LPL.

The atherogenic risk of elevated VLDL is debatable. Normal VLDLs have too large a molecule to penetrate the vascular endothelium. But the concomitant presence of other risk factors, such as hypertension and nicotinism, leads to damage to the vessel wall, and thus an atherogenic effect can occur. A change in particle size ("small VLDL") is also expected. Some authors believe that a decrease in plasma HDL reduces the reverse transport of cholesterol from peripheral cells to the liver.

Prognosis and treatment: Treatment consists mainly in reducing ev. overweight, in a low-carb diet and a ban on alcohol. It is recommended to use a fish oil preparation, ev. nicotinic acid; fibrates are also useful.

Familial hyperlipoproteinemia type V (= increase in VLDL + chylomicrons)

It is a relatively rare disease (1: 5,000); more often, adults who are obese have hyperuricemia and diabetes. Alcohol and estrogen use, as well as renal insufficiency, may be a causative factor.

Clinical manifestations: Type V is not atherogenic; however, there is a significant tendency for acute pancreatitis. It is associated with eruptive xanthomas, arthritis, dry eyes and mouth, and emotional lability.

Biochemical findings: Milky turbid serum for the presence of chylomicrons and VLDL. At ELFO increased pre-ß fractions and increased fraction "at the start" (chylomicrons). S-triacylglycerols range between 10-20 mmol / l (although even higher values ​​have been reported). S-cholesterol is also elevated (especially when triacylglycerols are high). Usual values ​​are 7.75-13 mmol / l. The VLDL-cholesterol / triacylglycerol ratio is less than 0.30 (difference from type III). As with type IV, apoprotein C-III is increased and the C-II / C-III ratio is decreased. Type V is sometimes associated with the occurrence of the unusual isoform apoE-4.

Pathobiochemistry: The cause of this type is not fully explained. It is thought to be a disorder of VLDL and chylomicron metabolism. However, postheparin lipase activity is normal (unlike type I). The reason for the simultaneous increase in VLDL and chylomicrons is explained in three possible ways: (1) Increased VLDL formation and secretion by the liver leads to saturation of the triacylglycerol-rich particle removal mechanism, (2) Triacylglycerol synthesis is normal but upturned (3) It can be a combination of both mechanisms. Alcohol-related forms are very common in some countries (eg France). Distinguishing type IV from V is difficult, as is distinguishing from the secondary form induced by diet (excessive intake of fats and carbohydrates).

Prognosis and treatment: Acute pancreatitis is uncommon. The basic treatment consists of a low-energy diet and a ban on alcohol consumption.

Hyperalphalipoproteinemia

Familial hyper-α-lipoproteinemia

It is a genetic lipoprotein abnormality associated with the occurrence of longevity in the family (8-12 years compared to the average in the population); the presumed form of heredity is autosomal dominant. However, the familial form must be distinguished from the acquired (secondary) form, e.g. in alcohol abuse or in the use of contraceptives or oestrogens.

The syndrome is characterized by a marked increase in HDL-cholesterol (increase in 1-lipoprotein per ELFO), a mild to moderate increase in total plasma cholesterol, and normal concentrations of S-triacylglycerols. HDL particles containing only ApoAI are multiplied, not particles containing both ApoAI and ApoAII [LpA I: A II]. The abnormality is probably due to increased apo AI synthesis. The risk of atherosclerosis-induced cardiovascular disease is reduced.

Hypolipoproteinemia

Familial hypo-α-lipoproteinemia

It is still considered a rare genetic abnormality, probably with autosomal dominant inheritance. Plasma LDL cholesterol levels are reduced below the 5 percentile limit of the normal range. Like hyperlipoproteinemia, this anomaly is associated with longevity, probably due to the low incidence of myocardial infarction.

The biochemical finding lies in low LDL-cholesterol levels; However, the LDL fraction is always present, unlike abetalipoproteinemia, where it is completely absent. The concentration of VLDL and HDL particles can be decreased or normal or even increased. The defect consists in reduced particle formation with ApoB (about half); however, LDL catabolism is normal. Because LDL particles are a product of VLDL and patients with hypo-β-lipoproteinemia have low levels of S-triacylglycerols, VLDL production is also reduced in some individuals. the LDL receptors of the respective cells are taken up very rapidly from the plasma.

Abetalipoproteinemia

It is a rare autosomal recessively transmitted disease that completely lacks ApoB-containing lipoprotein particles. Heterozygotes have no obvious clinical signs. LDL-cholesterol levels are reduced, but otherwise laboratory tests are normal. In contrast, homozygotes have suffered from fat malabsorption since infancy; they have steatoreu if their diet contains fat. They do not gain weight and have delayed growth. If they do not receive vitamin E supplementation (water-soluble preparations), progressive CNS degeneration occurs. Lack of vitamin A and carotene leads to reduced visual acuity and night blindness. Erythrocytes of a special shape appear in the blood picture, so-called acanthocytes according to horny or spur-like protrusions. They have a prolonged prothrombin time for vitamin K deficiency.

A biochemical defect is the inability to synthesize or secrete ApoB-containing lipoprotein particles. It is therefore absent in the circulation of the chylomicron; the transport of endogenous cholesterol to peripheral cells via the LDL is disrupted. Adrenal cortisol production is impaired during ACTH stimulation. Cholesterol in ApoE-containing particles is transported normally.

Hypoalphalipoproteinemia

Conditions with reduced HDL-cholesterol have an increased risk of atherosclerosis and consequent cardiovascular disease. The familial form seems to have a dominant inheritance. Abnormalities in the apoA-I polypeptide composition have also been described, and one such lipoprotein has been named according to the site of the described case of apoA-IMilano. Patients are mostly asymptomatic. Without apoA-I, HDL cannot form and without HDL, apoC-II cannot be transported back to the liver during VLDL degradation. The result is a relative deficiency of apoC-II and elevated VLDL levels.

Fisheye disease

The disease is characterized by corneal opacity. HDL-cholesterol levels are reduced to 10% of normal levels; HDL2 in particular is reduced, while apoA-I is reduced. There is usually a higher triacylglycerolemia.

Analphalipoproteinemia (Tangier disease)

It is a rare disease with autosomal recessive inheritance, characterized by a complete lack of plasma HDL. Homozygotes have undetectable levels of HDL-cholesterol and extremely low apoA-I and apoA-II. Beta-fractions are missing from lipoprotein electrophoresis. Both total cholesterol and LDL-cholesterol are reduced; is mild hypertriacylglycerolemia. The biochemical defect probably lies in the abnormally rapid catabolism of HDL and apoA-I.

The clinical picture shows striking yellow-orange cholesterol ester deposits on the pharyngeal and rectal mucosa, enlargement of tonsils and adenoid vegetation. Patients suffer from recurrent peripheral neuropathy; they have eyelid ptosis, muscular atrophy and weak muscular reflexes. Splenomegaly and thrombocytopenia are common.

Atherosclerosis

The first step in the pathogenesis of atherosclerosis is probably damage to the endothelial cells to which monocytes and T-lymphocytes adhere; they then penetrate the intima space, where they transform into macrophages, which are the main cells involved in the atherosclerosis process. The next step is the uptake of lipoprotein particles by macrophages, mainly VLDL (IDL, particles with a high content of triacylglycerols), less so LDL; however, after free radical lipoperoxidation, LDL uptake is accelerated. This is done by means of so-called scavenger receptors, the amount of which on the cell surface is not regulated according to the need for cholesterol in the cells, as is the case with the LDL receptors described by Brown and Goldstein. This causes a massive accumulation of lipoprotein particles within the macrophages and their transformation into foam cells, which underlie the atheroma plaques. Recognition of oxidized LDL by macrophage sweeping receptors is associated with loss of lysine residues in Apo B100 ev. also with a bond with malondialdehyde and further with a covalent bond of free NH2-groups with carbonyl groups formed by lipoperoxidation. Oxidized LDL and phosphatidylcholine stimulate smooth muscle, endothelial and monocyte cells to produce chemotactic and growth factors such as PDGF (= platelet-derived growth factor), FGF (fibroblast growth factor) IL1 and TNF, and heparin-binding epidermal growth factor. This results in increased replication of smooth muscle cells, which accelerates the process of atherogenesis: endothelial cells induce the production of tissue factor by the action of oxidized LDL and reduce the synthesis of a plasminogen activator inhibitor. This provides the conditions for accelerated platelet aggregation and thrombus formation, especially at the site where the calcified (by some oxysterols) atheroma plaque ruptures.

According to current opinions, more and more importance is attached to oxidative stress. This can be used both for modulation and for mediating the effect of risk factors. According to some authors, the connecting link between causal risk factors and atherosclerosis is vascular endothelial dysfunction. Localized or generalized endothelial dysfunction is associated with a tendency to vasoconstriction, thrombogenesis, and increased vascular wall permeability to lipoprotein particles. It is often associated with reduced local synthesis and concentration of nitric oxide radical and weakening of its antiproliferative effect. Lipoperoxidation is a sequence of reactions in which free oxygen and nitrogen radicals remove hydrogen from a polyunsaturated fatty acid (PUFA) molecule, changing the pentadiene arrangement of double bonds to conjugated dienes. These react with atomic oxygen (1O2) or an oxygen radical (• O2) to form a peroxyl radical, which can attack other PUFA chains. It removes hydrogen atoms from them to form lipid hydroperoxides (lipoperoxides), cyclic peroxides and cyclic endoperoxides. Their hydrolysis produces toxic aldehydes - such as malondialdehyde (MDA), 4-hydroxy-2,3-trans-nonenal, alkoxy radicals and low molecular weight volatile hydrocarbons (pentane, hexane). One molecule of hydroxyperoxyl radical can attack a number of PUFA molecules. Termination occurs by the reaction of two radicals or by reactions with scavengers. Toxic radicals then react with the -SH and -NH2 groups in proteins, changing their chemical structure and function. Fragmentation of apoB100 occurs, and cross-linking of apo AI reduces their ability to absorb cholesterol and activate LCAT. The oxidability of LDL is affected by the amount and type of fatty acids that are part of phospholipids and cholesteryl esters. Oleic acid has an antioxidant effect; on the contrary, PUFAs of the n.3 and a-6 series have a prooxidizing character, as do trans-monoenoic fatty acids (especially elaidic acid), which result from the partial hydrogenation of vegetable and animal fats. Not only LDL but also VLDL with a high content of triacylglycerols (Sf 400) and their remnant particles are subject to oxidative modification. Intracellular transport of VLDL and VLDL remnants to macrophages via the B1 scavenger receptor (SR-B1) is significantly enhanced by their oxidative modification. To date, more than 200 risk factors for cardiovascular disease have been identified. The 3 best known include: (1) Abnormal lipids (more than 15 types of cholesterol-containing lipoproteins and 4 different types of triacylglycerol-rich particles are known; some are atherogenic), (2) high blood pressure, and (3) cigarette smoking. This is approached by others, such as diabetes, overweight, lack of physical activity and many others, including abnormalities in factors involved in blood clotting (fibrinogen, factor VII, plasminogen activator inhibitors or newly identified ones (homocysteine, isoforms apo E 4)). About 50% of myocardial infarctions result in a reduction in the normal ventricular ejection fraction, in which 75% to 95% of the stenosis is removed. in the artery, it adjusts the ejection fraction to normal in a quarter of patients and improves it in a third.When cholesterol levels can be reduced within 3-5 years, stenosis can be remodeled and reduced, improving coronary flow in many patients. angioplasty or coronary "by-pass" saves the "hibernating" myocardium, but it does not prevent later heart attacks, which occur in about half patients as new fat deposits form in the coronary arteries. These lipid deposits are covered only by a thin layer of endothelial cells and thus represent a very unstable lesion that can easily rupture and cause massive thrombosis in the collateral-free area. This risk can be reduced by very aggressive hypolipidemic therapy.

Characteristics of the general assessment of lipid risk factors

Cholesterol

It is well known that the incidence of cardiovascular disease positively correlates with total cholesterol levels and age. It is twice as high in men and women over the age of 70 as it is in their 50s: An independent statistically significant correlation with cholesterolemia and coronary heart disease was found in the Framingham study. However, in the large group examined (with cholesterol values ​​between 3.9 and 7.8 mmol / l) there was an overlap between the two groups (with and without coronary heart disease). The study showed that only cholesterol testing to predict risk in 90% of individuals is uncertain. As many as 20% of individuals with cholesterol below 5.2 mmol / l had coronary heart disease. According to this study, most patients with coronary heart disease had a cholesterol level of 5.8 mmol / l, individuals with values ​​between 3.8 and 5.2 had coronary heart disease in 20%, with values ​​between 5.2 and 7.8 in 40% and with values ​​above 7 .8 mmol / l in 90%. It is therefore important to detect those 20% who are candidates for coronary heart disease, even though they have cholesterol of 5.2 mmol / l as well as 40% with values ​​around 5.8 mmol / l. The values ​​of HDL-cholesterol, LDL-cholesterol and triacylglycerols are discriminatory parameters.

High Density Lipoproteins (HDL)

High levels of HDL-cholesterol (HDL-C) are associated with a low risk of coronary heart disease and, conversely, individuals who have total cholesterol <5.2 mmol / l but HDL-C <1. 04 mmol / l have the same high risk of coronary heart disease as individuals with cholesterol 6.7 mmol / l. Individuals with cholesterolemia of 6.7 mmol / l are not protected by HDL-C levels of 1.3–1.5 mmol / l. It follows that there is a different optimal adequate HDL-C level that corresponds to a certain cholesterol level. For simplicity, it is recommended to calculate the total ratio. chol. / HDL-C, which has better risk prediction, especially in the elderly, than the values ​​of both parameters alone. Using the index total. cholesterol / HDL-C can be predicted in up to 80% of individuals ev. restenosis after treatment based on coronary angioplasty. Restenosis usually occurs within 6 months after the procedure. Intensive hypolidemic therapy lasting at least one year may improve the situation.

Low Density Lipoproteins (LDL)

LDL-cholesterol is a very important risk factor, but in itself, if its level is not enormously high (> 7.8 mmol / l), it has no general value in predicting individual risk. Studies have shown that e.g. the peak incidence of coronary heart disease (ie 40%) is at a cholesterol level of 5.8 mmol / l. To identify the risk, it is necessary to examine the level of HDL-cholesterol.

Triacylglycerols (= TG)

Plasma triacylglycerol levels are another independent risk factor for coronary heart disease, especially HDL-C. Men with TG levels> 1.7 mmol / l and HDL-C <1.04 mmol / l have a double risk. Women with TG> 1.7 mmol / l and HDL-C <1.35 mmol / l have a high risk of coronary heart disease. Increased insulin resistance, hypertension and central obesity, and a tendency to hyperuricemia were also found in these individuals. Reaven called this group metabolic syndrome X. Another study (PROCAM) found that in 73 individuals with newly developed coronary heart disease, 37 had TG> 1.7 mmol / l and HDL-C <0.9 mmol / l. In the Helsinki Heart Study, treatment with gembrozil in patients with LDL / HDL> 5 and TG> 2.3 mmol / l decreased the incidence of myocardial infarction by 71%.

Very Low Density Lipoproteins (VLDL)

The liver is made up of different types of VLDL. Individuals on a vegetarian diet or with higher alcohol consumption, as well as patients treated with estrogens or colestipol, produce so-called "puffy" VLDL (ie larger, non-atherogenic VLDL by Sf = 60-400). Most of these particles return from the circulation back to the liver, or are transformed into LDL-A particles, which are taken up only by small amounts by macrophages; most return to the liver. In contrast, in individuals living on a diet rich in (saturated) fatty acids and cholesterol, which leads to a central type of obesity, producing small VLDL of increased density (Sf = 12–60), which are metabolized to small dense LDL-B. Both of these lipoprotein particles are eagerly taken up by macrophages in the artery wall. TG levels are considered a suitable marker of this situation (70% of cases with hypertriacylglycerolemia have elevated small dense VLDL, which are highly atherogenic). It has been found that when the TG level rises to 1.1 mmol / l, small dense LDL-B particles begin to appear; at a TG concentration of about 1.7 mmol / l, even normal (non-atherogenic) LDL A particles disappear completely from the circulation and only atherogenic LDL-B particles remain in the plasma. Conclusion: In order to detect a higher risk, it is necessary to first examine the whole. cholesterol; if> 3.8 mmol / l and the index total. chol. / HDL-C> 4, it is necessary to examine TG (if not> 1.7 mmol / l) or LDL to determine whether hypertriacylglycerolemia (fibrates, niacin) or elevated cholesterol (statins) should be treated.

Investigation of individual risk factors for atherosclerosis

Lipoproteins

Apolipoprotein AI (low value)

It is a structural protein mainly of HDL particles and also an activator of LCAT. Low values ​​are a risk factor for coronary heart disease. Physiological values:

  • men: 1.0–1.5 g / l
  • women: 1.1-1.6 g / l

A value below 0.9 g / l is risky

Apolipoprotein B

Physiological values ​​(adults):

  • men: 1.05 ± 0.25 g / l
  • women: 0.95 ± 0.25 g / l
Tab. 3: Evaluation of apoB in relation to the risk of atherosclerosis
value Risk
up to 0,9 g/l very low
0,9–1,20 g/l low
1,20–1,40 g/l medium
over 1,40 g/l high

Apolipoprotein E, isoforms

ApoE is a major component of VLDL and chylomicron residues. The apoE gene located on chromosome 19 has 3 alleles (apoE-2, apoE-3, apoE-4), which give rise to six possible variants (3 homozygous, 3 heterozygous). The difference between the individual isoforms is due to the exchange of cysteine ​​for arginine in the polypeptide chain; apoE-2 has 2 cysteine ​​residues, apoE3 1 cysteine ​​and 1 arginine, apoE-4 no cysteine ​​and 2 arginines. This affects the affinity of the lipoprotein particles that contain them for specific receptors in both the liver and extrahepatic receptors. Homozygotes having apoE-2/2 are characterized by reduced clearance of VLDL and chylomicron residues from the bloodstream through the liver because apoE-2 binds poorly to the apoE receptor. In addition, individuals with apoE-2 have reduced lipolytic conversion of VLDL to LDL, so they have less LDL and more VLDL in plasma. They develop so-called dysbetalipoproteinemia (Type III according to Fredrickson). Individuals with apoE-4 are characterized by increased conversion of VLDL to LDL, which leads to a decrease in plasma VLDL and, conversely, to an increase in LDL.

Lipoprotein Lp (a)

Elevated serum concentrations of the specific lipoprotein Lp (a) are considered an independent factor. It is a lipoprotein class with a molecular weight greater than 5.4 million, moving on 1-region electrophoresis; in ultracentrifugation it is found in the HDL-fraction and is referred to as "sinking pre-". The major apolipoprotein is apo B100; However, Lp (a) still has a specific antigen: apoprotein (a)  = apo (a). Apo (a) is composed of 7 "kringle" domains that have high homology to the "kringle" domains of plasminogen, as well as 1 protease domain. The similarity with plasminogen leads to the possibility of occupying receptor sites on fibrin and to inhibiting fibrinolysis; Thus, Lp (a) has a double risk effect: it is atherogenic (presence of apo B-100) and antifibrinolytically [presence of apo (a)]. Apo (a) has 6 genetically determined isoforms: F, B, S1, S2, S3, S4, which differ in molecular weight; however, 11 other polymorphic forms have been described. Apo (a) is metabolized differently than other apoB-containing lipoproteins. It can be considered as an acute phase reactant because it temporarily increases e.g. after major surgery or acute myocardial infarction. A transient increase was also observed in unstable angina pectoris (without an increase in CRP). The physiological function is unknown. It is speculated that its ability to bind to fibrin allows the delivery of cholesterol molecules to the organizing thrombus. Physiological values ​​of Lp (a) (adults): 0.10–0.2 g / l Risk value:> 0.30 g / l Note: The level of the whole Lp (a) molecule may not correspond to the degree of risk of atherosclerosis (due to different genetic variants). The determination of "free" apolipoprotein (a) is of greater significance. The binding of Apo (a) to the LDL particle occurs extracellularly, so that both complete Lp (a) and free Apo (a) are found in the bloodstream.

LDL-cholesterol (calculated) (LDL-C)

The Planell calculation, which also includes the ApoB determination, has a better explanatory value than the Friedewald formula. LDL-C (mmol / l) = 0.41. total. cholesterol (mmol / l) - 0.32. triacylglycerols (mmol / l) + 1.70. ApoB (g / l) - 0.27

Tab. 3: Evaluation of cholesterolemia
Normolipidemic Type IIa Type IIb Type IV
3,19±0,56 6,46±2,21 5,27±0,93 3,40±0,48

(It is particularly suitable for distinguishing Fredrikson type IIb from type IV(”cut-off”=4, 13 mmol/l)

Tab. 3: Increase in lipids and lipoproteins in relation to the risk of atherosclerosis (according to Assmann)
Parameter (mmol/l) No risk Suspicious range (need for treatment according to clinical finding) High risk (must be treated)
S-triacylglycerols < 1,7 1,7–2,3 > 2,3
S-cholesterol < 5,7 5,7–6,7 > 6,7
S-LDL-cholesterol < 3,9 3,9–4,9 > 4,9
S-HDL-cholesterol men > 1,4 0,9–1,4 < 0,9
S-HDL-cholesterol women > 1,7 1,2–1,7 < 1,2
Tab. 3: S-cholesterol values ​​(in mmol / l) as a risk factor in different age groups (according to NIH)
Age group Medium risk High risk
2–19 > 4,4 > 4,78
20–29 > 5,17 > 5,7
30–39 > 5,7 > 6,2
40 a více > 6,2 > 6,72
Tab. 3: Values ​​of risk factors (according to Roseneu and van Biervliet)
Parameter Infants Adults
S-cholesterol (mmol/l) > 4,13 > 6,2
S-HDL-cholesterol (mmol/l) < 1,16 < 1,16
apo B (g/l) > 0,90 > 1,10
apo A-1 (g/l) < 1,10 < 1,10
apo A-I/apo B < 1,2 < 1,0

Non - lipoprotein biochemical risk factors

Homocystein

Homocysteine ​​is an important (central) metabolite of methionine metabolism. It is not found in the diet, but is formed from methionine during its metabolism to S-adenosylmethionine. Homocysteine ​​can then be metabolized in four possible ways: In the so-called remethylation pathway, it obtains a CH3 group from betaine or 5-methyltetrahydrofolate to form methionine. The one with ATP gives S-adenosylmethionine, which is the immediate donor of methyl groups e.g. for purine core synthesis. In the transulfuration pathway (i.e., when there is an excess of methionine or when cysteine ​​is to be synthesized), homocysteine ​​condenses with serine to form cystathione, which hydrolyzes to ketobutyrate and cysteine. The fourth pathway is the export of intracellular homocysteine ​​to the extracellular environment (when production outweighs utilization in the cell). About 1.2 mmol enters the plasma from the cells within 24 hours. An increase in both homocysteine ​​free (about 5-10%) and bound (to albumin) and also as homocysteinylcysteine ​​was observed in vascular diseases. An increase in plasma homocysteine ​​appears to be a separate risk (approximately 3-fold), especially for peripheral vascular diseases and cerebrovascular diseases, less so for coronary artery disease. An inherited defect in homocysteine ​​metabolism enzymes, such as cystathionine synthase or 10-methylene tetrahydrofolate reductase, leads to an increase in homocysteine. Similarly, deficiencies in some vitamins such as folic acid, vitamin B12 and pyridoxal phosphate (a derivative of vitamin B6) cause hyperhomocysteinuria. Smoking and drinking coffee also encourage her. The pathogenesis of homocysteine-induced vascular damage is unclear. Homocysteine ​​can impair endothelial cell function, even leading to endothelial cell damage; it also induces increased blood clotting. It affects the normal prothrombolytic and anticoagulant activity of endothelial cells. Physiological values: 11.58 ± 4.48 μmol / l (10.2–14.8 μmol / l) (12–15 μmol / l) (values ​​increase with increasing age). Pathological increase (in μmol / l):

  • slight increase .......... 16-31
  • medium increase ........ 32–100
  • significant increase .......> 100
  • patients with coronary artery bypass grafting (Hyánek, 1996) 14.2 ± 4.9 (women), 16.0 ± 5.3 (men)
  • stroke: 15.7 ± 5.0

This can be caused by:

  • hereditary enzyme defect:
* heterozygous cystathionine-β-synthase deficiency (incidence 1-2%)
* decreased methylenetetrahydrofolate reductase activity
* reduced methyltetrahydrofolate-homocysteine-methyltransferase activity
* defects in the regulation of homocysteine ​​metabolism by conversion to S-adenosylmethionine

Increase in other pathological conditions:

  • classic homocystinuria (type I) (cystathionine-β-reductase deficiency): 258 μmol / l (and more) (Type II: methylcobalamin defect; type III: methylenetetrahydrofolate reductase deficiency)
  • vitamin B12 deficiency
  • folic acid deficiency
  • other (psoriasis, leukemia, solid tumors, hyperthyroidism)
  • increased creatine production
  • decreased renal function

Elevated homocysteine ​​is an independent risk factor for premature cardiovascular disease (risk increase of 20-30%). The level of homocysteine ​​is reduced by the intake of vitamins (folic acid, vitamin B12, pyridoxine), as well as increased consumption of vegetables and fruits. Therefore, in some cases of hyperhomocystinemia, folate supplementation helps (5 mg / day; cave: epilepsy). Note: It is very important for the determination to separate the plasma from the blood cells or the serum from the clot as soon as possible, preferably to take in ice-cooled samples and thus quickly transported to the laboratory for centrifugation (within 1 hour at the latest). Otherwise, there is a significant artificial increase.

Stress test with L-methionine (according to Hyánek)

Principle: after administration of L-methionine (7 g) its increase is monitored in 6 hours. A more significant increase indicates a deficit of dihydrofolate reductase activity and a risk of vascular endothelial damage by homocysteine.

Fibrinogen

Elevated plasma lipoprotein poses another potential risk for coronary heart disease.

Tissue plasminogen activator (tPA)

Represents another possible risk factor for myocardial infarction (P. Ridker) Values:

  • control: 9.2 g / l
  • high risk: over 12.2 g / l (triple risk)
  • low risk: below 5.2 g / l

Mikroalbuminurie

Microalbuminuria is defined as abnormal urinary albumin excretion at between 20-200 /g / min (ie 30-300 g / day). It is associated with a number of cardiovascular risk factors such as:

  • increased blood pressure and altered daily blood pressure profile
  • insulin resistance and sensitivity to NaCl
  • atherogenic lipid profile
  • systemic endothelial dysfunction
  • increased activity of the renin-angiotensin system

Microalbuminuria is a marker of early organ damage in essential hypertension such as left ventricular hypertrophy, retinal vessel damage, thickened carotid wall, and glomerular hyperfiltration. Examination of microalbuminuria and its monitoring is therefore a valuable and relatively inexpensive laboratory marker (predictor of morbidity and mortality) of cardiovascular diseases.

Reaven Multiple Metabolic Syndrome (= "Syndrome X")

It is an association of several risk factors, probably based on insulin resistance associated with obesity, hypertension, hypertriacylglycerolemia, hyperglycemia, which were added by others such as hyperuricemia, hirsutism, blood clotting and fibrinolysis disorders, microalbuminuria and the formation of so-called small; Importantly, all of these signs are associated with the development of premature atherosclerosis. However, the metabolic syndrome and its causes cannot be understood as a manifestation of wear and tear or aging, but it is based on genetically modified terrain

Leptin Obesity is a risk factor for many diseases of civilization. Leptin is a proteohormone of Mr = 16,000 belonging to the family of hematopoietic cytokines, which is a product of the OB gene on chromosome 7q31.3 and which plays a key role in the regulation of body weight. It is produced by differentiated adipocytes. The main factor determining the level of circulating leptin is the amount of adipose tissue. Concentration increases with body mass index BMI = [weight (in kg)] / [height (in m)] 2 or with body fat content. Even small variations in body fat result in significant differences in leptin levels - from 0.03 g / l in anorexic patients to  100 g / l in extremely obese individuals. Leptin levels depend on age (up to 20 years). The biological effect of leptin is mediated by the leptin receptor (OB-R), which belongs to the class I family of cytokine receptors. Leptin causes a reduction in food intake (in experimental animals) and increased energy expenditure, including thermogenesis. In addition, leptin affects a number of endocrine systems. This effect is mediated by the action on the hypothalamus, namely the production of neuropeptide Y (NPY) - leptin suppresses the expression and secretion of NPY, which is a stimulator of food intake and regulates a number of pituitary hormones. In very simple terms, leptin is a signal from adipose tissue that informs the body of the energy stores stored in fat depots. (Blum, 1997).

Diseases and conditions associated with secondary hyperlipoproteinemia

Genetically determined primary hyperlipoproteinemia must be distinguished from conditions in which hyperlipoproteinemia may occur secondarily. Elevated lipid levels usually disappear when the underlying disease is corrected. They represent about 40% of all hyperlipoproteinemias. Their treatment consists mainly in the treatment of the primary disease. These include hyperlipoproteinemia in the following conditions:

Obesity

About 30-50% of patients with obesity also have hyperlipoproteinemia characterized by biochemical changes as in type IV. These disappear after treatment with a low-energy diet and after a ban on alcohol.

Alcoholism

In some "predisposed" patients, even mild but regular alcohol consumption induces changes in the lipid spectrum corresponding to type IV (excessive VLDL production for acyl-CoA accumulation). In chronic alcoholics, the condition is exacerbated and there is not only hyper-VLDLemia, but also hyperchylomicronemia (lipid profile as in type V). At the same time, there is a risk of acute pancreatitis.

In Zieve's syndrome, which can be found in chronic, malnourished alcoholics, hypertriacylglycerolemia is accompanied by liver dysfunction with jaundice and hemolytic anemia.

Hepatopathy

Acute hepatitis, chronic hepatitis and acute liver failure are characterized by a marked increase in triacylglycerol at normal or reduced cholesterol levels. In acute hepatitis, the lipid profile corresponds mostly to type IV, in chronic hepatitis rather to type IIb. The process is conditioned by the synthesis of an abnormal LDL-fraction called lipoprotein X (LP-X), which occurs especially in cases with cholestasis. Elevated triacylglycerols are usually associated with decreased hepatic LCAT production. In cases of liver cirrhosis with higher levels of non-esterified fatty acids but with normal LCAT activity, plasma triacylglycerols are normal. LCAT activity also correlates with cholesterol ester levels; their reduction, which is typical for diffuse hepatocellular damage, is due to the low activity of LCAT. In hepatocellular carcinoma, about a quarter of adult patients have hypercholesterolemia. Hypercholesterolemia (increased LDL) is also common in acute intermittent porphyria.

Cholestasis

In both intrahepatic and extrahepatic cholestasis, there is a marked hypercholesterolemia (increase 2–5 times), especially an increase in "free" cholesterol. LP-X-lipoprotein has been shown to be a sensitive indicator of cholestasis in serum (unlike other lipoproteins, it travels to the cathode in an agar gel ELFO). Except for cases of biliary cirrhosis and hepatocellular carcinoma, LP-X levels are higher in extrahepatic obstruction than in intrahepatic obstruction.

Diabetes mellitus

In 40% of diabetics, hyperlipoproteinemia is type IV; type IIb is less common and type V is rare. Classical "diabetic hyperlipemia", ie mainly an increase in VLDL (triacylglycerols: 11, 3–20 mmol / l, occurring under the image of severe mixed hyperlipoproteinemia with eruptive xanthomas and lipaemia retinalis and manifestations of ketosis, is found only in untreated type I diabetics (insulin-independent) Insulin deficiency leads to the mobilization of triacylglycerol in adipose tissue, excessive amounts of released fatty acids are metabolized in the liver to ketone bodies and part to triacylglycerol, which enters VLDL. In both cases, this leads to hyper-VLDL.

Nephropathy

Nephrotic syndrome (regardless of its etiology) is characterized by severe hypercholesterolemia. The increase in triacylglycerols is variable. In milder forms, hyperlipidemia is type IIa, in more severe ones it is type IIb. That is, mainly the increase in LDL, which increases in proportion to the decreasing albumin level. When albumin drops below 10 g / l, VLDL also increases, sometimes extremely (with a corresponding increase in triacylglycerols). VLDL in nephrotic syndrome are rich in cholesterol esters. The mechanism of hyperlipoproteinemia in nephrotic syndrome is not entirely clear; perhaps it is the adaptive proteosynthesis of plasma proteins (and therefore lipoproteins) to significant urinary protein loss in order to maintain circulatory oncotic pressure. The incidence of myocardial infarction in adult patients is increased. In patients with chronic renal failure (approximately 70%), there is type IV hyperlipoproteinemia with decreased HDL. Type II a or IIb hyperlipoproteinemia occurs in 90% of renal transplant patients.

Endocrinopathy

They are very often associated with disorders in lipid metabolism.

Hypothyroidism

In hypothyroidism, there is almost always hypercholesterolemia (type IIa or IIb) with increased LDL and HDL. VLDLs tend to be normal. The catabolism of apoprotein B is reduced, thus disrupting the conversion of "VLDL-remnants".

Steroid hyperlipoproteinemia

Hypercholesterolemia and hypertriacylglycerolemia are often present when glucogenic corticoids or Cushing's syndrome are administered (cholesterol elevations always predominate). Both VLDL and LDL (endogenous or mixed hyperlipoproteinemia) are elevated; type IIb according to Fredrickson's scheme.

Estrogenic hyperlipoproteinemia

Estrogens are known to increase HDL levels (premenopausal period in women), which is attributed to the antiatherogenic protection of women (unlike men). Estrogen administration (eg in the form of birth control pills) increases VLDL, especially in combination with nortestosterone derivatives.

Hypopituitarism

Hyperlipoproteinemia (increased triacylglycerols, less increased cholesterol) often occurs in hypopituitarism. Growth hormone deficiency leads to reduced fatty acid oxidation in the liver and to ketogenesis with concomitant increased synthesis of triacylglycerols and VLDL.

Acromegaly

The level of triacylglycerols and cholesterol is highly variable. The mild form is associated with a slight increase in triacylglycerols and a slight decrease in cholesterol. Insulin resistance is usually increased.

Stress hyperlipoproteinemia

Stressful situations are accompanied by the mobilization of non-esterifying fatty acids from adipose tissue. Elevated levels of triacylglycerols (endogenous hypertriacylglycerolemia) are caused by both increased secretion of VLDL from the liver and impaired catabolism. Cholesterol and LDL levels are reduced. Stress hyperlipoproteinemia occurs in conditions such as acute myocardial infarction, spontaneous or emotional stress, extensive burns, sepsis induced by particularly gram-negative flora.

Anorexia nervosa

About half of the patients develop hypercholesterolemia; triacylglycerol levels are usually normal. Perhaps this is due to reduced fecal excretion of cholesterol metabolites and limited transport of cholesterol to the liver.

Pheochromocytoma

Sometimes there is a type IV hyperlipoproteinemia.

Iatrogenic hyperlipoproteinemia

Administration of some drugs may induce hyperlipoproteinemia:

  • thiazide preparations increase mainly VLDL (type IV),
  • corticosteroids cause long-term hyperlipoproteinemia type IV, at high doses type I,
  • blockers (propranolol) sometimes cause hyper-VLDLemia (type IV).
Exogenous hypercholesterolemia

Excessive cholesterol in the diet leads to hypercholesterolemia. A case was reported of a patient who ate 8-12 egg yolks (about 3.5 g of cholesterol) on a regular basis. Her cholesterol level was around 24 mmol / l. During a normal diet, the level gradually decreased.

Monoclonal gammopathy

Endogenous hyperlipoproteinemia (VLDL remnants) may be found in patients with paraproteinemia. However, hypocholesterolemia (LDL reduction) is also common in IgA myeloma. There are also complexes of VLDL and LDL with abnormal immunoglobulins. Clinical manifestations of hyperlipoproteinemias in paraproteinemias are usually palm xanthomas (characteristic).

Glycogenosis

Endogenous or mixed hyperlipoproteinemia is characteristic of hepatorenal glycogenosis (Gierke's disease). It is probably caused by hypoglycaemia, which leads to hyperinsulinism and increased fat breakdown from adipose tissue. Therefore, treatment consists in preventing hypoglycemic conditions by feeding more frequently. There may be hyperlipoproteinemia in other hepatic glycogenoses (type III and type IV).

Hyperuricemia

It is often associated with type IV hyperlipoproteinemia.

Poruchy z ukládání lipidů

Kromě poruch metabolismu lipidů, vyznačujících se hlavně změnami v cirkulujících lipoproteinech, nacházíme poruchy, jejichž místo leží v přeměně lipidů v buňkách (enzymové defekty v lyzosomech). Můžeme je dělit na metabolické poruchy katabolismu cholesterolu a na poruchy v přeměně sfingolipidů.

Cholesterol storage disorders

Wolman's disease

It is a rare inherited metabolic disorder with autosomal recessive transmission, in which cholesterol and triacylglycerol esters are deposited in the cells of the liver, kidney, adrenal gland, hematopoietic system and small intestine. This is due to the lack of lysosomal acid lipase. The disease manifests itself only a few weeks after birth (at six months): failure to thrive, hepatosplenomegaly, recurrent vomiting, persistent diarrhea with steatorrhea, bilateral adrenal calcification. The course is usually fatal. Confirmation of the diagnosis is histochemical (lysosomal acid lipase deficiency, accumulation of cholesterol esters in the lysosomes of affected tissue cells).

Cholesterol ester storage disease

It's actually a milder equivalent of Wolman's disease. Acid lysosomal lipase deficiency is incomplete (activity 1–20% of normal); clinical manifestations appear much later (patients live to be 40 years old), hepatomegaly and the extent of cholesterol ester storage in cells is not so great. Both diseases are thought to be an allelic mutation affecting the same genetic locus.

Familial lecithin: cholesterol acyltransferase (LCAT) deficiency

It is a deficiency of a key enzyme that performs cholesterol esterification. It is a very rare inherited disorder with autosomal recessive transmission. Serum triacylglycerols are elevated and cholesterol levels are variable; but cholesterol esters are missing (3-30% vs. 75-70%). Lipids are deposited on the cornea (milky clouding), in the glomerular membrane (proteinuria), in the bone marrow and spleen (sea blue histiocytes), in erythrocytes (anemia), in the vascular wall (atheromas). There are also changes in plasma lipoproteins: triacylglycerolemia 2.26–11.3 mmol / l. Most lipoprotein classes are abnormal (different size, different ELFO motility, etc.).

Sphingolipidosis

It is a group of inherited disorders of membrane lipid metabolism, namely sphingolipids, which are manifested by the accumulation of these lipids in the relevant organs. Their schematic overview is given in the table.

Tab. An overview of the most important sphingolipidoses
Name Clinical manifestations Place of damage Enzyme defect
Gangliosidosis (Norman-Landig disease) mental retardation, degeneration of the nervous system, hepatosplenomegaly, cherry red macula on the ocular background brain, liver, spleen, bones ganglioside-β-galactosidase
Tay-Sachs disease disease mental retardation, degeneration of the nervous system brain, nervous system hexosaminidase A
Glucocerebrosidosis (Gaucher disease - 3 types) mental retardation, degeneration of the nervous system, hepatosplenomealia, erosion of the cortex of the long bones and pelvis (pathological fractures) liver, spleen, nervous system, bones cerebrosyl β-glucosidase
Galactosylceramidosis (Krabbe disease) mental retardation, degeneration of the central and peripheral nervous system (globoid bodies) brain, nervous system cerebrosyl β-galactosidase
Galactosylceramidosis (Scholz 's disease) mental retardation, degeneration of the central and peripheral nervous system brain, nervous system arylsulfatase A -
Ceramide trihexosidosis (Fabry disease) || diffuse angiokeratoma, corneal damage || blood vessels, skin, kidney || α-galactosidase A
- Sphingomyelinosis (Niemann-Pick disease, 5 forms: A to E) hepatosplenomegaly, mental retardation, degeneration of the nervous system, cherry red macula on the ocular background, "foam" cells in the bone marrow liver, spleen, brain, bone marrow sphingomyelinase - Ceramidosis (Farber 's disease) mental retardation, degeneration of the nervous system skin, joints, brain ceramidase

Links

Related articles

Resources

  • MASOPUST, Jaroslav – PRŮŠA, Richard. Patobiochemie metabolických drah. 2. edition. Univerzita Karlova, 2004. pp. 208. 

References

  1. BURTIS, Carl A, Edward R ASHWOOD a David E BRUNS. Tietz textbook of clinical chemistry and molecular diagnostics. 4. vydání. St. Louis, Mo : Elsevier Saunders, 2006. 2412 s. s. 930. ISBN 978-0-7216-0189-2.