Creatine: Difference between revisions
Feedback

From WikiLectures

No edit summary
No edit summary
Line 1: Line 1:
{{Zkontrolováno | 20111130144405 | [[Uživatel:Sviglerova|MUDr.Jitka Švíglerová, Ph.D.]] ([[Diskuse s uživatelem:Sviglerova|diskuse]])|164953|20111130144405 }} [[Soubor:Creatine neutral.png|thumb|right|150 px|Vzorec kreatinu]] [[Soubor:Phosphocreatine.png|thumb|right|150 px|Vzorec kreatinfosfátu]] [[Soubor:Creatinine.png|thumb|right|150 px|Vzorec kreatininu]]
[[File:Creatine neutral.png|thumb|Creatine (formula)]]
 
'''Creatine''' is an organic acid, nitrogen compound derivative, which is synthesised endogenously in the liver and the kidneys, but it is stored and utilised mainly in the skeletal muscle.
'''Creatine''' is an organic acid, nitrogen compound derivative, which is synthesised endogenously in the liver and the kidneys, but it is stored and utilised mainly in the skeletal muscle.  


IUPAC name: 2-[carbamimidoyl(methyl)amino]acetic acid <ref>
IUPAC name: 2-[carbamimidoyl(methyl)amino]acetic acid <ref>
Line 13: Line 12:
}} </ref>
}} </ref>


'''Kreatin''' (N-methylguanidinoctová kyselina), {{en|creatine}}, je dusíkatá sloučenina, která se nachází hlavně v [[Kosterní svalovina#Stavba kostern.C3.AD svaloviny|kosterní svalovině]]. Je tvořen v [[Ledviny|ledvinách]] a v [[Játra|játrech]] z aminokyselin [[glycin]]u a [[arginin]]u a následně metylován. Syntéza probíhá ve dvou fázích:
Creatine is produced from the biosynthesis of the essential amino acids '''L-glycine''' and '''L-arginine''' and then is methylated - SAM, or can be obtained from '''dietary sources'''.
#V ledvinách: enzym ''transaminidasa'' přenáší guanidinovou skupinu argininu na glycin a vzniká guanidinacetát.
[[File:CreatineSynthesis(en).png|thumb|Synthesis of creatine]]
#V játrech: methylace guanidinacetátu na kreatin, jako koenzym v této reakci je S-adenosylmethionin.
Synthesis occurs in two steps:
[[Soubor:CreatineSynthesis(en).png|thumb|center|500 px|Syntéza kreatinu]] Je-li v kosterním svalu dostatečné množství [[Adenosintrifosfát|ATP]], je kreatin fosforylován za vzniku '''kreatinfosfátu''' pomocí enzymu kreatinkinázy, který pak slouží jako rychle dostupný zdroj energie (obsahuje [[Vysokoenergetické fosfáty|makroergní fosfátovou vazbu)]]. Bezprostředně po zahájení [[kontrakce svalu|kontrakce]], kdy sval spotřebuje zásoby ATP, je makroergní fosfát z kreatinfosfátu přenesen na ADP, čímž vznikne ATP a kreatin. Zásoby energie uložené v kreatinfosfátu pokryjí potřebu energie pracujícího svalu na dobu asi prvních 10 sekund. Kreatin a kreatinfosfát jsou nestabilní molekuly, které se spontánní cyklizací přeměňují neenzymaticky na [[kreatinin]] ve svalech. Kreatinin se nemůže již fosforylovat a přechází do krve a později je vylučován močí. {{Dobrý příklad|'''Referenční hodnota''' v krevní plasmě: 0,06–0,10 mmol/l }}<noinclude>
 
# kidneys: a guanidine group is transferred with the help of a ''transaminidase'' enzyme from arginine to glycine, which results in the formation of guanidinoacetate
# liver: methylation of guanidinoacetate results in the creatine formation, SAM (S-adenosylmethionine) is a coenzyme in this reaction
 
 
The main dietary sources of '''creatine''' are meat and fish. Creatine is absorbed in the small intestine and enters the circulation and is then distributed into various tissues of the body - most importantly muscle and PNS/CNS<ref>{{Cite|type=web|corporation=National Center for Biotechnology Information|source_name=PubChem Compound Summary for CID 586, Creatine|publisher=National Library of Medicine|cited=2022-11-12|url=https://pubchem.ncbi.nlm.nih.gov/compound/Creatine}}</ref>.


Creatine is '''phosphorylated''' in the '''skeletal muscle''' (enzyme: ''[[creatine kinase]]'') to form '''creatine phosphate''' (CP, also phosphocreatine), which then serves as a quickly-accessible source of energy in tissues with fluctuating energy requirements, such as the skeletal muscle and the brain. [[Creatine phosphate]] contains a high-energy phosphate (macroergic) bond. As soon as the muscle contraction begins, the muscle needs a fast supply of ATP and so the macroergic phosphate is transferred from creatine phosphate to ADP, which results in the formation of ATP and creatine.
[[File:Cyclization of Creatine.svg|thumb|247x247px|Cyclization of Creatine]]
The energy resources in the form of creatine phosphate can cover the energy requirements of a working muscle for the '''first 10 seconds'''. Both creatine and creatine phosphate are fairly unstable molecules, which <u>spontaneously</u> undergo <u>non-enzymatic cyclisation</u> to '''[[creatinine]]''' in the muscle cells. Creatinine is a waste product of the muscle as it cannot be phosphorylated and used as an energy storage so is passed to circulation and excreted in the urine.
==References==
==References==
===Related articles===
===Related articles===
*[[Poruchy syntézy kreatinu]]
*[[Creatine Kinase / Assay]]
*[[Kreatinfosfát]]
*[[Creatin phosphate|Creatine phosphate]]
*[[Kreatinin]] • [[Kreatininová clearance]]
*[[Creatinine]] • [[Creatinine clearance]]
*[[ATP]] • [[Mechanismus svalové kontrakce]]
*[[ATP]] • [[Contraction in skeletal muscle]]
===Bibliography===
===Bibliography===
*{{Citace
*{{Citace

Revision as of 14:08, 12 November 2022

Creatine (formula)

Creatine is an organic acid, nitrogen compound derivative, which is synthesised endogenously in the liver and the kidneys, but it is stored and utilised mainly in the skeletal muscle.

IUPAC name: 2-[carbamimidoyl(methyl)amino]acetic acid [1]

Creatine is produced from the biosynthesis of the essential amino acids L-glycine and L-arginine and then is methylated - SAM, or can be obtained from dietary sources.

Synthesis of creatine

Synthesis occurs in two steps:

  1. kidneys: a guanidine group is transferred with the help of a transaminidase enzyme from arginine to glycine, which results in the formation of guanidinoacetate
  2. liver: methylation of guanidinoacetate results in the creatine formation, SAM (S-adenosylmethionine) is a coenzyme in this reaction


The main dietary sources of creatine are meat and fish. Creatine is absorbed in the small intestine and enters the circulation and is then distributed into various tissues of the body - most importantly muscle and PNS/CNS[2].

Creatine is phosphorylated in the skeletal muscle (enzyme: creatine kinase) to form creatine phosphate (CP, also phosphocreatine), which then serves as a quickly-accessible source of energy in tissues with fluctuating energy requirements, such as the skeletal muscle and the brain. Creatine phosphate contains a high-energy phosphate (macroergic) bond. As soon as the muscle contraction begins, the muscle needs a fast supply of ATP and so the macroergic phosphate is transferred from creatine phosphate to ADP, which results in the formation of ATP and creatine.

Cyclization of Creatine

The energy resources in the form of creatine phosphate can cover the energy requirements of a working muscle for the first 10 seconds. Both creatine and creatine phosphate are fairly unstable molecules, which spontaneously undergo non-enzymatic cyclisation to creatinine in the muscle cells. Creatinine is a waste product of the muscle as it cannot be phosphorylated and used as an energy storage so is passed to circulation and excreted in the urine.

References

Related articles

Bibliography

Kategorie:Biochemie Kategorie:Slovník fyziologie Kategorie:Významně pozměněné zkontrolované články Kategorie:Fyziologie

  1. National Center for Biotechnology Information. PubChem Compound Summary for CID 586, Creatine [online]. National Library of Medicine, [cit. 2022-11-12]. <https://pubchem.ncbi.nlm.nih.gov/compound/Creatine>.
  2. National Center for Biotechnology Information. PubChem Compound Summary for CID 586, Creatine [online]. National Library of Medicine, [cit. 2022-11-12]. <https://pubchem.ncbi.nlm.nih.gov/compound/Creatine>.