The Warburg effect: Difference between revisions
Feedback

From WikiLectures

(Created page with "Pojmem ''Warburgův efekt'' označujeme specifický metabolismus nádorových buněk, které mají oproti zdravým buňkám méně funkční mitochondrie a významně snížen...")
 
No edit summary
 
(25 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Pojmem ''Warburgův efekt'' označujeme specifický metabolismus nádorových buněk, které mají oproti zdravým buňkám méně funkční mitochondrie a významně sníženou oxidativní fosforylaci. Syntéza ATP je zde kompenzována glykolyticky za současné tvorby laktátu. Pro Warburgův efekt se ujal i synonymní výraz ''aerobní glykolýza''<ref>
We use the term ''Warburg effect'' to refer to the specific metabolism of cancer cells that have less functional mitochondria and significantly reduced oxidative phosphorylation compared to healthy cells. Here, ATP synthesis is compensated glycolytically with concomitant lactate formation. The synonymous term ''aerobic glycolysis'' has been adopted for the Warburg effect.<ref>
{{Citace
{{Cite
  | typ = kniha
  | type = book
  | příjmení1 = Singh
  | surname1 = Singh
  | jméno1 = Keshav
  | name1 = Keshav
  | příjmení2 = Costello
  | surname2 = Costello
  | jméno2 = Leslie
  | name2 = Leslie
  | titul = Mitochondria and Cancer
  | title = Mitochondria and Cancer
  | vydání = -
  | edition = -
  | vydavatel = Springer Science & Business Media
  | publisher = Springer Science & Business Media
  | rok = 2009
  | year = 2009
  | isbn = 9780387848358
  | isbn = 9780387848358
  | rozsah = 289
  | range = 289
  | strany =  
  | pages =  
}}</ref><ref>
}}</ref><ref>
{{Citace
{{Cite
| typ = článek
| type = article
| příjmení1 = Weinhouse
| surname1 = Weinhouse
| jméno1 = Sidney
| name1 = Sidney
| článek = On Respiratory Impairment in Cancer Cells
| article = On Respiratory Impairment in Cancer Cells
| časopis = Science
| journal = Science
| rok = 1956
| year = 1956
| ročník = 3215
| the_year = 3215
| svazek = 124
| bundle = 124
| strany = 267-269
| pages = 267-269
| issn = 0036-8075
| issn = 0036-8075
| doi = 10.1126/science.124.3215.267}}</ref>.  
| doi = 10.1126/science.124.3215.267}}</ref>.  
[[Soubor:Warburgův efekt2.jpg|náhled|Upraveno dle ''Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation <ref>
[[File:Warburgův efekt2.jpg|thumb|Modified according to ''Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation <ref>
{{Citace
{{Cite
| typ = článek
| type = article
| příjmení1 = Wander Heiden  
| surname1 = Wander Heiden  
| jméno1 = MG et al.
| name1 = MG et al.
| článek = Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation
| article = Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation
| časopis = Science
| journal = Science
| rok = 2009
| year = 2009
| ročník = 324
| the_year = 324
| svazek = 5930
| bundle = 5930
| strany = 1029 - 1033
| pages = 1029 - 1033
| issn = 0036-8075
| issn = 0036-8075
| doi = 10.1126/science.1160809}}</ref>. V obrázku byly použity šablony [https://smart.servier.com/ Servier Medical Art].'']]
| doi = 10.1126/science.1160809}}</ref>. Templates were used in the picture [https://smart.servier.com/ Servier Medical Art].'']]


==== '''První polovina 20. století''' ====
==== '''First half of the 20th century''' ====
V roce 1924 popsal tento nádorový fenotyp v poněkud zjednodušeném pojetí německý vědec [[csw:Otto_Heinrich_Warburg|Otto H. Warburg]]<ref>
In 1924, a German scientist described this tumour phenotype in somewhat simplified terms [[csw:Otto_Heinrich_Warburg|Otto H. Warburg]]<ref>
{{Citace
{{Cite
| typ = článek
| type = article
| příjmení1 = Warburg
| surname1 = Warburg
| jméno1 = Otto et al.
| name1 = Otto et al.
| článek = Metabolism of carcinoma cells
| article = Metabolism of carcinoma cells
| časopis = Biochem Z
| journal = Biochem Z
| rok = 1924
| year = 1924
| ročník = 152
| the_year = 152
| svazek =
| pages = 309 - 344
| strany = 309 - 344
}}
| issn =
</ref>. Something similar was observed by Herbert G. Crabtree in yeast. He even confirmed that in these yeasts, when glucose or fructose is in excess, respiration is temporarily inhibited. Later he decided to test Warburg's claim not only on cancer cells but also on various tissues. Crabtree concluded his work by asserting that aerobic glycolysis is not the domain of malignant cells alone, but is inherent in any increased pathological proliferation<ref>
| doi = }}</ref>. Něco podobného pozoroval Herbert G. Crabtree u kvasinek. Ten dokonce potvrdil, že u nich při nadbytku glukózy nebo fruktózy dojde k přechodné inhibici respirace. Později se rozhodl ověřit Warburgovo tvrzení nejen na na nádorových buňkách, ale i na různých tkáních. Crabtree uzavřel práci tvrzením, že aerobní glykolýza není doménou pouze maligních buněk, ale je vlastní jakékoliv zvýšené patologické proliferaci<ref>
{{Cite
{{Citace
  | type = article
  | typ = článek
| surname1 = Crabtree
| příjmení1 = Crabtree
| name1 = HG
| jméno1 = HG
| article = The carbohydrate metabolism of certain pathological overgrowths
| článek = The carbohydrate metabolism of certain pathological overgrowths
| journal = Biochem J
| časopis = Biochem J
| year = 1928
| rok = 1928
| the_year = 22
| ročník = 22
| bundle = 5
| svazek = 5
| pages  = 1289-98
| strany = 1289-98
| issn = 0264-6021
| issn = 0264-6021
| doi = 10.1042/bj0221289}}</ref>. Další experimenty pak Crabtreeho přivedly k hypotéze, že oxidativní fosforylace je pro progresi konkrétních tumorů klíčová a že není možné zjednodušeně označit metabolismus nádorové tkáně za převážně glykolytický<ref>
| doi = 10.1042/bj0221289}}</ref>. Further experiments then led Crabtree to hypothesize that oxidative phosphorylation is crucial for the progression of specific tumors and that it is not possible to simplistically label the metabolism of tumor tissue as predominantly glycolytic<ref>
{{Citace
{{Cite
  | typ = článek
  | type = article
| příjmení1 = Crabtree
| surname1 = Crabtree
| jméno1 = HG
| name1= HG
| článek = Observations on the carbohydrate metabolism of tumours
| article = Observations on the carbohydrate metabolism of tumours
| časopis = Biochem J
| journal = Biochem J
| rok = 1929
| year = 1929
| ročník = 23
| the_year = 23
| svazek = 3
| bundle = 3
| strany = 536-545
| pages = 536-545
| issn = 0264-6021
| issn = 0264-6021
| doi = 10.1042/bj0230536}}</ref>.   
| doi = 10.1042/bj0230536}}</ref>.   


<small>Warburgova jedinečnost spočívá v tom, že jako první pochopil význam oxidačních a redukčních metabolických drah v živých organismech a dokázal je zasadit do správného kontextu. Za svoji práci dostal v roce 1931 Nobelovu cenu [https://www.nobelprize.org/prizes/medicine/1931/warburg/biographical/].</small>  
<small>Warburg's uniqueness lies in the fact that he was the first to understand the importance of oxidative and reductive metabolic pathways in living organisms and to put them in their proper context. He was awarded the Nobel Prize for his work in 1931 [https://www.nobelprize.org/prizes/medicine/1931/warburg/biographical/].</small>  


Hypotézu o nefunkčních, resp. méně funkčních mitochondriích potvrdil až v roce 1951 Feodor Lynen. V padesátých letech už bylo možné míru oxidativní fosforylace a glykolýzy kvantifikovat, což přimělo Otto Warburga, tehdy ředitele ''Max Planck Institutu'', k napsání nové shrnující práce<ref>
The hypothesis of non-functional or less functional mitochondria was confirmed only in 1951 by Feodor Lynen. By the 1950s, it was possible to quantify the rates of oxidative phosphorylation and glycolysis, which prompted Otto Warburg, then director of the ''Max Planck Institute'', to write a new summary paper<ref>
{{Citace
{{Cite
| typ = článek
| type = article
| příjmení1 = Warburg
| surname1 = Warburg
| jméno1 = Otto
| name1 = Otto
| článek = On the Origin of Cancer Cells
| article = On the Origin of Cancer Cells
| časopis = Science
| journal = Science
| rok = 1956
| year = 1956
| ročník = 123
| the_year = 123
| svazek = 3191
| number = 3191
| strany = 309-314
| pages = 309-314
| issn = 0036-8075
| issn = 0036-8075
| doi = 10.1126/science.123.3191.309}}</ref>. V ní publikuje nadčasovou hypotézu: "Samotná ''energie'' bude středobodem našeho uvažování." Warburg už tenkrát viděl slabinu nádorových buněk v tom, že využijí všechno (nejen glykolýzu, ale např. i oxidativní fosforylaci), aby pokryly enormní potřebu ATP.  
| doi = 10.1126/science.123.3191.309}}</ref>. In it, he publishes a timeless hypothesis: "The ''energy'' itself will be at the center of our thinking." Even then, Warburg saw the weakness of cancer cells as using everything (not just glycolysis, but oxidative phosphorylation, for example) to meet the enormous need for ATP.


==== '''Konec 20. a začátek 21. století''' ====
==== '''Late 20th and early 21st century''' ====


V druhé polovině 20. století se řada vědeckých skupin upnula k možnosti využít Warburgův efekt jako cíl protinádorové terapie. Úkolem bylo selektivně inhibovat glykolýzu, a tak vyvolat buněčnou smrt. Ukázalo se, že takhle jednoduché to není, byť se povedlo v mitochondriích nádorových buněk identifikovat řadu patologických změn<ref>
In the second half of the 20th century, a number of scientific groups were drawn to the possibility of using the Warburg effect as a target for anticancer therapy. The challenge was to selectively inhibit glycolysis and thus induce cell death. It turned out not to be that simple, although a number of pathological changes in the mitochondria of cancer cells have been identified<ref>
{{Citace
{{Cite
| typ = článek
| type = article
| příjmení1 = Diaz-Ruiz
| surname1 = Diaz-Ruiz
| jméno1 = R.
| name1 = R.
| článek = Tumor cell energy metabolism and its common features with yeast metabolism
| article = Tumor cell energy metabolism and its common features with yeast metabolism
| časopis = Biochimica et Biophysica Acta (BBA)
| journal = Biochimica et Biophysica Acta (BBA)
| rok = 2009
| year= 2009
| ročník = 1796
| the_year = 1796
| svazek = 2
| bundle = 2
| strany = 252-265
| pages = 252-265
| issn = 0304-4165
| issn = 0304-4165
| doi = 10.1016/j.bbcan.2009.07.003}}</ref>. K modernímu vnímání nádorového metabolismu přispěl až v roce 2004 [https://www.researchgate.net/profile/Rodrigue-Rossignol Rodrigue Rossignol], který ukázal, že dostupnost energetických substrátů může měnit nejen oxidační kapacitu nádorových buněk, ale i morfologii jejich mitochondrií<ref>
| doi = 10.1016/j.bbcan.2009.07.003}}</ref>. It was not until 2004 that he contributed to the modern understanding of tumour metabolism [https://www.researchgate.net/profile/Rodrigue-Rossignol Rodrigue Rossignol], by showing that the availability of energy substrates can alter not only the oxidative capacity of cancer cells but also the morphology of their mitochondria<ref>
{{Citace
{{Cite
| typ = článek
| type = article
| příjmení1 = Rossignol
| surname1 = Rossignol
| jméno1 = Rodrigue et al.
| name1 = Rodrigue et al.
| článek = Energy Substrate Modulates Mitochondrial Structure and Oxidative Capacity in Cancer Cells
| article = Energy Substrate Modulates Mitochondrial Structure and Oxidative Capacity in Cancer Cells
| časopis = Cancer Research
| journal = Cancer Research
| rok = 2004
| year = 2004
| ročník = 64
| the_year = 64
| svazek = 3
| bundle = 3
| strany = 985 - 993
| pages = 985 - 993
| issn = 00085472
| issn = 00085472
| doi = 10.1158/0008-5472.CAN-03-1101}}</ref>. Další studie prokázaly, že nádorové buňky fungují na principu tzv. [[Reduktivní karboxylace|metabolického remodelingu]]. Řada buněk solidního tumoru proliferuje velice rychle. Současně se ale maligní tkáň nestíhá dostatečně rychle vaskularizovat. V podobných případech pak dochází k přechodnému nedostatku substrátů oxidativní fosforylace nebo glykolýzy. Nezřídka dochází i k snížení koncentrace kyslíku, což celou věc ještě více komplikuje (viz [[Reduktivní karboxylace]])<ref>
| doi = 10.1158/0008-5472.CAN-03-1101}}</ref>. Further studies have shown that tumour cells work on the principle of the so-called [[Reductive carboxylation|metabolic remodeling]]. Many solid tumour cells proliferate very rapidly. At the same time, the malignant tissue does not vascularize fast enough. In similar cases, there is a transient lack of substrates of oxidative phosphorylation or glycolysis. Often there is also a reduction in oxygen concentration, which further complicates matters (see [[Reductive carboxylation]])<ref>
{{Citace
{{Cite
| typ = článek
| type = article
| příjmení1 = Smolková
| surname1 = Smolková
| jméno1 = Katarína et al.
| name1 = Katarína et al.
| článek = The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells
| article = The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells
| časopis = International Journal of Cell Biology
| journal = International Journal of Cell Biology
| rok = 2012
| year = 2012
| ročník = 2012
| the_year = 2012
| svazek = xxx
| bundle = xxx
| strany = 0 - 12
| pages= 0 - 12
| issn = 1687-8884
| issn = 1687-8884
| doi = 10.1155/2012/273947}}</ref>.<references />
| doi = 10.1155/2012/273947}}</ref>.<references />


[[Kategorie:Biochemie]][[Kategorie:Metabolismus]][[Kategorie:Nádorový metabolismus]][[Kategorie:Onkologie]]
[[Category:Biochemistry]][[Category:Metabolism]][[Category:Tumor metabolism]][[Category:Oncology]]

Latest revision as of 11:03, 22 April 2024

We use the term Warburg effect to refer to the specific metabolism of cancer cells that have less functional mitochondria and significantly reduced oxidative phosphorylation compared to healthy cells. Here, ATP synthesis is compensated glycolytically with concomitant lactate formation. The synonymous term aerobic glycolysis has been adopted for the Warburg effect.[1][2].

Modified according to Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation [3]. Templates were used in the picture Servier Medical Art.

First half of the 20th century[edit | edit source]

In 1924, a German scientist described this tumour phenotype in somewhat simplified terms Otto H. Warburg[4]. Something similar was observed by Herbert G. Crabtree in yeast. He even confirmed that in these yeasts, when glucose or fructose is in excess, respiration is temporarily inhibited. Later he decided to test Warburg's claim not only on cancer cells but also on various tissues. Crabtree concluded his work by asserting that aerobic glycolysis is not the domain of malignant cells alone, but is inherent in any increased pathological proliferation[5]. Further experiments then led Crabtree to hypothesize that oxidative phosphorylation is crucial for the progression of specific tumors and that it is not possible to simplistically label the metabolism of tumor tissue as predominantly glycolytic[6].

Warburg's uniqueness lies in the fact that he was the first to understand the importance of oxidative and reductive metabolic pathways in living organisms and to put them in their proper context. He was awarded the Nobel Prize for his work in 1931 [1].

The hypothesis of non-functional or less functional mitochondria was confirmed only in 1951 by Feodor Lynen. By the 1950s, it was possible to quantify the rates of oxidative phosphorylation and glycolysis, which prompted Otto Warburg, then director of the Max Planck Institute, to write a new summary paper[7]. In it, he publishes a timeless hypothesis: "The energy itself will be at the center of our thinking." Even then, Warburg saw the weakness of cancer cells as using everything (not just glycolysis, but oxidative phosphorylation, for example) to meet the enormous need for ATP.

Late 20th and early 21st century[edit | edit source]

In the second half of the 20th century, a number of scientific groups were drawn to the possibility of using the Warburg effect as a target for anticancer therapy. The challenge was to selectively inhibit glycolysis and thus induce cell death. It turned out not to be that simple, although a number of pathological changes in the mitochondria of cancer cells have been identified[8]. It was not until 2004 that he contributed to the modern understanding of tumour metabolism Rodrigue Rossignol, by showing that the availability of energy substrates can alter not only the oxidative capacity of cancer cells but also the morphology of their mitochondria[9]. Further studies have shown that tumour cells work on the principle of the so-called metabolic remodeling. Many solid tumour cells proliferate very rapidly. At the same time, the malignant tissue does not vascularize fast enough. In similar cases, there is a transient lack of substrates of oxidative phosphorylation or glycolysis. Often there is also a reduction in oxygen concentration, which further complicates matters (see Reductive carboxylation)[10].

  1. SINGH, Keshav – COSTELLO, Leslie. Mitochondria and Cancer. - edition. Springer Science & Business Media, 2009. 289 pp. ISBN 9780387848358.
  2. WEINHOUSE, Sidney. On Respiratory Impairment in Cancer Cells. Science. 1956, y. 3215, p. 267-269, ISSN 0036-8075. DOI: 10.1126/science.124.3215.267.
  3. WANDER HEIDEN, MG et al.. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science. 2009, y. 324, p. 1029 - 1033, ISSN 0036-8075. DOI: 10.1126/science.1160809.
  4. Incomplete citation of article.  WARBURG, Otto et al.. Metabolism of carcinoma cells. Biochem Z. 1924, y. 152, p. 309 - 344, 
  5. CRABTREE, HG. The carbohydrate metabolism of certain pathological overgrowths. Biochem J. 1928, y. 22, p. 1289-98, ISSN 0264-6021. DOI: 10.1042/bj0221289.
  6. CRABTREE, HG. Observations on the carbohydrate metabolism of tumours. Biochem J. 1929, y. 23, p. 536-545, ISSN 0264-6021. DOI: 10.1042/bj0230536.
  7. WARBURG, Otto. On the Origin of Cancer Cells. Science. 1956, y. 123, no. 3191, p. 309-314, ISSN 0036-8075. DOI: 10.1126/science.123.3191.309.
  8. DIAZ-RUIZ, R.. Tumor cell energy metabolism and its common features with yeast metabolism. Biochimica et Biophysica Acta (BBA). 2009, y. 1796, p. 252-265, ISSN 0304-4165. DOI: 10.1016/j.bbcan.2009.07.003.
  9. ROSSIGNOL, Rodrigue et al.. Energy Substrate Modulates Mitochondrial Structure and Oxidative Capacity in Cancer Cells. Cancer Research. 2004, y. 64, p. 985 - 993, ISSN 00085472. DOI: 10.1158/0008-5472.CAN-03-1101.
  10. SMOLKOVÁ, Katarína et al.. The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells. International Journal of Cell Biology. 2012, y. 2012, p. 0 - 12, ISSN 1687-8884. DOI: 10.1155/2012/273947.