Urine osmolality: Difference between revisions
Feedback

From WikiLectures

No edit summary
Tag: Manual revert
No edit summary
Line 10: Line 10:
*
*
* Toto upozornění se vkládá šablonou {{subst:Vložený článek}}
* Toto upozornění se vkládá šablonou {{subst:Vložený článek}}
-------------------------------------------------------------------------------------------------------------->__TOC__'''Osmolalita moči''' závisí na '''množství osmoticky aktivních částic''' vyloučených do moči, přičemž nezáleží na jejich hmotnosti, velikosti ani elektrickém náboji. Osmolalita je vyjadřována v mmol/kg. Je jen přibližně závislá na hustotě moči. Její měření je ve srovnání s [[hustota moči|hustotou]] přesnější, má větší výpovědní hodnotu a dává se mu přednost.
-------------------------------------------------------------------------------------------------------------->__TOC__
Porovnáme-li obě veličiny, odráží osmolalita '''celkovou látkovou koncentraci všech rozpuštěných látek''', zatímco hustota jejich celkovou hmotnostní koncentraci. Zjednodušeně proto můžeme říci, že osmolalita bude více ovlivněna změnami koncentrace nízkomolekulárních látek (v praxi především sodíku, glukózy a urey), zatímco na hustotu bude mít výraznější vliv přítomnost bílkoviny v moči.


Normální hodnoty osmolality při běžném příjmu tekutin jsou 300–900 mmol/kg. Osmolalita moči závisí na zřeďovací a koncentrační schopnosti ledvin. Krajní hodnoty osmolality při maximálním zředění nebo maximální koncentraci se pohybují v rozmezí 50–1200 mmol/kg. Je-li osmolalita moči přibližně stejná jako osmolalita krve, jde o '''izoosmolální''' moč. Moč '''hypoosmolální''' má nižší osmolalitu než krev, tj. nižší než asi 290 mmol/kg. Jako '''hyperosmolální''' moč se označuje moč o vyšší osmolalitě než vykazuje krev.
'''Urine osmolality''' depends on the '''amount of osmotically active particles''' excreted in the urine, regardless of their weight, size or electric charge. Osmolality is expressed in mmol / kg. It is only approximately dependent on urine density. Its measurement is more accurate compared to density , has a greater informative value and is preferred. If we compare the two quantities, the osmolality reflects the total mass concentration '''of all solutes''' , while the density reflects their total mass concentration. Therefore, we can simply say that osmolality will be more affected by changes in the concentration of low molecular weight substances (in practice, especially sodium, glucose and urea), while density will be more significantly affected by the presence of protein in the urine.


Teoreticky si můžeme představit, že definitivní moč vzniká z izoosmolálního glomerulárního filtrátu, ke kterému se v renálních tubulech přidává nebo se z něj naopak resorbuje čistá, tzv. [[bezsolutová voda]].
Normal osmolality values ​​at normal fluid intake are 300-900 mmol / kg. Urine osmolality depends on the dilution and concentration of the kidneys. The extreme values ​​of osmolality at maximum dilution or maximum concentration are in the range of 50-1200 mmol / kg. If the osmolality of the urine is approximately the same as the osmolality of the blood, it is '''isoosmolar''' urine. Hypoosmolar urine '''has''' a lower osmolality than blood, i.e. less than about 290 mmol / kg. '''Hyperosmolar urine''' is urine with a higher osmolality than blood.
 
Theoretically, we can imagine that definitive urine arises from isoosmolar glomerular filtrate, to which pure, so-called [[solute-free water]] is added or resorbed in the renal tubules .
   
   
Transport bezsolutové vody vyjadřuje její [[clearance]]. Co tato veličina znamená, si vysvětlíme pomocí následujících úvah:
The transport of solute-free water expresses its [[clearance]]. We will explain what this quantity means using the following considerations: First, let us define the '''clearance of osmotically active substances''' . It is a quantity analogous to the commonly used clearance of endogenous creatinine : the clearance of osmotically active substances represents the theoretical volume of blood plasma, which is completely deprived of all osmotically active particles in the kidneys per unit time. The following will apply (derivation is similar to endogenous creatinine clearance):
Nejprve definujme '''clearance osmoticky aktivních látek'''. Jde o veličinu analogickou běžně používané [[clearance endogenního kreatininu]]: clearance osmoticky aktivních látek představuje teoretický objem krevní plazmy, který je za jednotku času v ledvinách zcela zbaven všech osmoticky aktivních částic. Bude platit (odvození je obdobné jako u clearance endogenního kreatininu):


::<math>Cl_{osm}=\frac{U_{osm} \cdot V}{P_{osm}}</math>,
::<math>Cl_{osm}=\frac{U_{osm} \cdot V}{P_{osm}}</math>,
::where '''Cl''' is the osmolar clearence in ml/s, '''V''' is diuresis of urine, '''U''' is the osmolar urine concentration, '''P''' is the osmolar plasma concentration.
If the primitive urine has the same osmolality as the plasma and we neglect the contribution of proteins to the total osmolality of the plasma, the volume of filtered primitive urine must be the same as the clearance of the osmotically active Cl particles .


 
Clearance -'''free water clearance''' is the difference between the actual volume of definitive urine excreted per unit time and osmolar clearance:
{|
| kde &nbsp;&nbsp;|| Cl<sub>osm</sub>&nbsp;&nbsp; || je osmolární clearance v ml/s,
|-
| || V || je [[diuréza]] v ml/s
|-
| || U<sub>osm</sub> || je osmolální koncentrace moči v mmol/kg vody,
|-
| || P<sub>osm</sub> || je osmolální koncentrace plazmy v mmol/kg vody.
|}
 
-li primitivní moč stejnou osmolalitu jako plazma a zanedbáme-li příspěvek bílkovin k celkové osmolalitě plazmy, musí být objem přefiltrované primitivní moči stejný jako clearance osmoticky aktivních částic Cl<sub>osm</sub>.
 
Jako '''clearance bezsolutové vody''' se označuje rozdíl mezi skutečným objemem definitivní moči vyloučené za jednotku času a osmolální clearance:


::<math>Cl_{H_2O}=V-Cl_{osm}</math>
::<math>Cl_{H_2O}=V-Cl_{osm}</math>
::where Cl H2O is the clearence of solute-free water, Cl osm is the osmolar clearence, V is diuresis.




{|
If the clearance of solute-free water i'''s negative''' , it means that part of the solute-free water has been resorbed from the primitive urine, so that the definitive urine is more osmotically concentrated. Conversely, if the clearance of solute-free water were '''positive''' , hypoosmolar urine would form, against blood plasma diluted with solute-free water. Physiological values ​​range between ,00.027 and ,000.007 ml / s.
| kde &nbsp;&nbsp;|| Cl<sub>H<sub>2</sub>O</sub>&nbsp;&nbsp; || je clearance bezsolutové vody v ml/s,
|-
| || Cl<sub>osm</sub> || je osmolální clearance v ml/s,
|-
| || V || je diuréza v ml/s.
|}


The kidneys are able to excrete large amounts of solute-free water to prevent hyponatremia. Conversely, in the absence of water, its excretion is limited and particles are excreted in a smaller volume of water.


Je-li clearance bezsolutové vody '''záporná''', znamená to, že se z primitivní moči část bezsolutové vody resorbovala, takže definitivní moč je osmoticky koncentrovanější. Pokud by naopak byla clearance bezsolutové vody '''pozitivní''', vznikala by hypoosmolální moč, proti krevní plazmě naředěná bezsolutovou vodou. Fyziologické hodnoty se pohybují mezi &minus;0,027 a &minus;0,007&nbsp;ml/s.
==== [[Osmolalita moči/stanovení|Determination of urine osmolality]] ====
 
Ledviny jsou schopné vyloučit velké množství bezsolutové vody, aby se zabránilo hyponatremii. Naopak při nedostatku vody je omezováno její vylučování a částice se vyloučí v menším objemu vody.
 
==== [[Osmolalita moči/stanovení|Stanovení osmolality moči]] ====
{{Edituj článek|Osmolalita moči/stanovení}}
{{:Osmolalita moči/stanovení}}
{{:Osmolalita moči/stanovení}}
<noinclude>
<noinclude>
== Odkazy ==
== Odkazy ==
=== Související články ===
=== Související články ===

Revision as of 13:06, 29 January 2022

Urine osmolality depends on the amount of osmotically active particles excreted in the urine, regardless of their weight, size or electric charge. Osmolality is expressed in mmol / kg. It is only approximately dependent on urine density. Its measurement is more accurate compared to density , has a greater informative value and is preferred. If we compare the two quantities, the osmolality reflects the total mass concentration of all solutes , while the density reflects their total mass concentration. Therefore, we can simply say that osmolality will be more affected by changes in the concentration of low molecular weight substances (in practice, especially sodium, glucose and urea), while density will be more significantly affected by the presence of protein in the urine.

Normal osmolality values ​​at normal fluid intake are 300-900 mmol / kg. Urine osmolality depends on the dilution and concentration of the kidneys. The extreme values ​​of osmolality at maximum dilution or maximum concentration are in the range of 50-1200 mmol / kg. If the osmolality of the urine is approximately the same as the osmolality of the blood, it is isoosmolar urine. Hypoosmolar urine has a lower osmolality than blood, i.e. less than about 290 mmol / kg. Hyperosmolar urine is urine with a higher osmolality than blood.

Theoretically, we can imagine that definitive urine arises from isoosmolar glomerular filtrate, to which pure, so-called solute-free water is added or resorbed in the renal tubules .

The transport of solute-free water expresses its clearance. We will explain what this quantity means using the following considerations: First, let us define the clearance of osmotically active substances . It is a quantity analogous to the commonly used clearance of endogenous creatinine : the clearance of osmotically active substances represents the theoretical volume of blood plasma, which is completely deprived of all osmotically active particles in the kidneys per unit time. The following will apply (derivation is similar to endogenous creatinine clearance):

,
where Cl is the osmolar clearence in ml/s, V is diuresis of urine, U is the osmolar urine concentration, P is the osmolar plasma concentration.

If the primitive urine has the same osmolality as the plasma and we neglect the contribution of proteins to the total osmolality of the plasma, the volume of filtered primitive urine must be the same as the clearance of the osmotically active Cl particles .

Clearance -free water clearance is the difference between the actual volume of definitive urine excreted per unit time and osmolar clearance:

where Cl H2O is the clearence of solute-free water, Cl osm is the osmolar clearence, V is diuresis.


If the clearance of solute-free water is negative , it means that part of the solute-free water has been resorbed from the primitive urine, so that the definitive urine is more osmotically concentrated. Conversely, if the clearance of solute-free water were positive , hypoosmolar urine would form, against blood plasma diluted with solute-free water. Physiological values ​​range between ,00.027 and ,000.007 ml / s.

The kidneys are able to excrete large amounts of solute-free water to prevent hyponatremia. Conversely, in the absence of water, its excretion is limited and particles are excreted in a smaller volume of water.

Determination of urine osmolality

Osmometer

Osmosis is used to accurately determine osmolality. They take advantage of the fact that dissolved particles affect some properties of the solution:

  • reduce the freezing point of the solution ( cryoscopic principle);
  • increase the boiling point of the solution ( ebulioscopic principle);
  • reduce the vapor pressure of the solvent above the solution.

The magnitude of the change in the above quantities depends on the concentration of osmotically active substances in the measured solution, and osmometers record these changes with great accuracy. A decrease in freezing point is usually observed. It is true that 1 mole of particles of a substance dissolved in 1 kg of water reduces its freezing point by 1.86 ° C.

Indicative calculation based on Na + , K + , NH 4 + and urea urea concentration values

Urine osmolality = 2 ([Na + ] + [K + ] + [NH 4 + ]) + [urea]

This calculation fails if the urine contains a high concentration of other substances that are physiologically present in orders of magnitude lower amounts - for example in severe glycosuria or ketonuria .


By approximate calculation from the value of relative density

If urine does not contain protein or sugar

multiply the last two digits of the relative density value by a factor of 33.

Relative urine density = 1,019 → Osmolality estimate: 19 · 33 = 627 mmol / kg.

if urine contains protein or sugar
we must first correct the relative density value
  • in the presence of protein for every 10 g / l we subtract from the value of relative density 0.003;
  • in the presence of glucose for every 10 g / l we subtract from the value of relative density 0.004.


Odkazy

Související články


Kategorie:Vložené články Kategorie:Biochemie Kategorie:Patofyziologie