PH of strong acids and bases: Difference between revisions
Feedback

From WikiLectures

No edit summary
No edit summary
Line 1: Line 1:
When calculating pH, it is always necessary to consider what is the source of oxonium cations in a given environment.
When calculating [[pH]], it is always necessary to consider what is the source of oxonium cations in a given environment.
===Strong monosaturated acids===
===Strong monosaturated acids===
For strong monosaturated acids the dissociation follows the equation
For '''strong monosaturated acids''' the dissociation follows the equation


<math>\mathrm{HA} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{A}^{-} + \mathrm{H}_3\mathrm{O}^{+}.</math>
<math>\mathrm{HA} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{A}^{-} + \mathrm{H}_3\mathrm{O}^{+}.</math>


For the calculation we assume:
For the calculation we assume:
* [[látkové množství]] <math>\mathrm{H}_3\mathrm{O}^{+}</math> bude podle výše uvedené rovnice stejné jako <math>\mathrm{A}^{-}</math>, což vzhledem k totožnému objemu platí i pro koncentraci, tedy <math>[\mathrm{H}_3\mathrm{O}^{+}] = [\mathrm{A}^{-}]</math>;
* [[the substance quantity]] of  <math>\mathrm{H}_3\mathrm{O}^{+}</math> according to the above equation will be the same as <math>\mathrm{A}^{-}</math>, which, given an identical volume, is also true for the concentration, i.e. <math>[\mathrm{H}_3\mathrm{O}^{+}] = [\mathrm{A}^{-}]</math>;
* všechna kyselina se – neboť je kyselinou silnou – přemění na <math>\mathrm{A}^{-}</math> a <math>\mathrm{H}_3\mathrm{O}^{+}</math>, proto označíme <math>[\mathrm{A}^{-}]</math> její koncentraci, tedy <math>[\mathrm{A}^{-}] = c_{\mathrm{HA}}</math>
* all acid - because it is a strong acid - is converted into <math>\mathrm{A}^{-}</math> a <math>\mathrm{H}_3\mathrm{O}^{+}</math>, therefore we will mark <math>[\mathrm{A}^{-}]</math> its concentration, i.e. <math>[\mathrm{A}^{-}] = c_{\mathrm{HA}}</math>
Odvodíme tedy:
Let's deduce:


<math>\mathrm{pH} = -\log\ [\mathrm{H}_3\mathrm{O}^{+}] = -\log\ [\mathrm{A}^{-}] = -\log\ c_{\mathrm{HA}},</math>
<math>\mathrm{pH} = -\log\ [\mathrm{H}_3\mathrm{O}^{+}] = -\log\ [\mathrm{A}^{-}] = -\log\ c_{\mathrm{HA}},</math>


a pro výpočet pH dostáváme vzorec
and to calculate the pH we get the formula
  <math>\mathrm{pH} = -\log\ c_{\mathrm{HA}}.</math>
  <math>\mathrm{pH} = -\log\ c_{\mathrm{HA}}.</math>
===Silné jednosytné zásady===
===Strong monosaturated bases===
U '''silných jednosytných zásad''' probíhá disociace podle rovnice
For '''strong monosaturated bases''' the dissociation follows the equation


<math>\mathrm{BOH} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{B}^{+} + \mathrm{OH}^{-} + \mathrm{H}_2\mathrm{O}</math>
<math>\mathrm{BOH} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{B}^{+} + \mathrm{OH}^{-} + \mathrm{H}_2\mathrm{O}</math>


Předpokládáme, stejně jako v případě silných jednosytných kyselin, že:
We assume, as in the case of strong monosaturates, that:
*látkové množství, resp. koncentrace, hydroxidových iontů a vzniklého <math>\mathrm{B}^{+}</math> je podle výše uvedené chemické rovnice stejné, tedy <math>[\mathrm{OH}^{-}] = [\mathrm{B}^{+}]</math>;
*the amount, or concentration, of hydroxide ions and the resulting <math>\mathrm{B}^{+}</math> is the same according to the above chemical equation, i.e. <math>[\mathrm{OH}^{-}] = [\mathrm{B}^{+}]</math>;
*disociace probíhá úplně, tedy <math>[\mathrm{B}^{+}] = c_{\mathrm{BOH}}.</math>
*dissociation occurs completely, i.e. <math>[\mathrm{B}^{+}] = c_{\mathrm{BOH}}.</math>
Výpočet je tedy analogický, musíme si jen uvědomit, že na rozdíl od kyselin není zásada zdrojem oxoniových kationtů, ale oxoniové kationty z prostředí odebírá (viz [[teorie kyselin a zásad]]), proto dosadíme z rovnice pro iontový součin [[voda|vody]]:
The calculation is therefore analogous, we just have to remember that unlike acids, the base is not a source of oxonium cations, but takes oxonium cations from the environment (see the [[theory of acids and bases]]), so we add from the equation for the ionic product of [[water]]:
*<math>[\mathrm{H}_3\mathrm{O}^{+}] = \frac{K_w}{[\mathrm{OH}^{-}]}</math>
*<math>[\mathrm{H}_3\mathrm{O}^{+}] = \frac{K_w}{[\mathrm{OH}^{-}]}</math>
a z těchto předpokladů odvodíme:
and from these assumptions, we deduce


<math>\mathrm{pH} = -\log\ [\mathrm{H}_3\mathrm{O}^{+}] = -\log\ \frac{K_w}{[\mathrm{OH}^{-}]} = \log\ [\mathrm{OH}^{-}] - \log K_w = \log\ [\mathrm{B}^{+}] - \log K_w = \log c_{\mathrm{BOH}} -\log K_w.</math>
<math>\mathrm{pH} = -\log\ [\mathrm{H}_3\mathrm{O}^{+}] = -\log\ \frac{K_w}{[\mathrm{OH}^{-}]} = \log\ [\mathrm{OH}^{-}] - \log K_w = \log\ [\mathrm{B}^{+}] - \log K_w = \log c_{\mathrm{BOH}} -\log K_w.</math>


Při 25&nbsp;°C pH spočítáme podle vzorce
Calculate the pH at 25 °C using the formula
  <math>\mathrm{pH} = 14 + \log\ c_{\mathrm{BOH}}.</math>
  <math>\mathrm{pH} = 14 + \log\ c_{\mathrm{BOH}}.</math>
===Silné dvousytné kyseliny===
===Strong dibasic acids===
'''Silné dvousytné kyseliny''' disociují podle rovnice
'''Strong dibasic acids''' dissociate according to the equation


<math>\mathrm{H}_2\mathrm{A} + 2\ \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{A}^{2-} + 2\ \mathrm{H}_3\mathrm{O}^{+},</math>
<math>\mathrm{H}_2\mathrm{A} + 2\ \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{A}^{2-} + 2\ \mathrm{H}_3\mathrm{O}^{+},</math>


předpokládáme tedy:
we assume, then:
*úplnou disociaci, tedy <math>c_{\mathrm{H}_2\mathrm{A}} = [\mathrm{A}^{2-}];</math>
*complete dissociation, i.e. <math>c_{\mathrm{H}_2\mathrm{A}} = [\mathrm{A}^{2-}];</math>
*ovšem látkové množství oxoniových kationtů a látkové množství vzniklého <math>\mathrm{A}^{2-}</math> je – na rozdíl od jednosytných kyselin – v poměru 1:2, tedy <math>[\mathrm{H}_3\mathrm{O}^{+}] = 2 \cdot c_{\mathrm{H}_2\mathrm{A}}.</math>
*however, the amount of oxonium cations and the amount of formed <math>\mathrm{A}^{2-}</math> is - in contrast to monosaturated acids - in a ratio of 1:2, i.e. <math>[\mathrm{H}_3\mathrm{O}^{+}] = 2 \cdot c_{\mathrm{H}_2\mathrm{A}}.</math>
Z toho odvodíme <math>\mathrm{pH} = -\log\ [\mathrm{H}_3\mathrm{O}^{+}] = -\log\ [\mathrm{A}^{2-}] = -\log (2 \cdot c_{\mathrm{H}_2\mathrm{A}}) = -\log 2 - \log c_{\mathrm{H}_2\mathrm{A}}</math>
From this we derive <math>\mathrm{pH} = -\log\ [\mathrm{H}_3\mathrm{O}^{+}] = -\log\ [\mathrm{A}^{2-}] = -\log (2 \cdot c_{\mathrm{H}_2\mathrm{A}}) = -\log 2 - \log c_{\mathrm{H}_2\mathrm{A}}</math>


a pH spočítáme podle vzorce
and the pH is calculated according to the formula
  <math> \mathrm{pH} = - \log\ c_{\mathrm{H}_2\mathrm{A}} - \log\ 2.</math>
  <math> \mathrm{pH} = - \log\ c_{\mathrm{H}_2\mathrm{A}} - \log\ 2.</math>
===Silné dvousytné zásady===
===Strong dibasic bases===
U '''silných dvousytných zásad''' probíhá disociace podle rovnice
'''Strong dibasic bases''' dissociate according to the equation


<math>\mathrm{B(OH)}_2 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{B}^{2+} + 2\ \mathrm{OH}^{-} + \mathrm{H}_2\mathrm{O}</math>
<math>\mathrm{B(OH)}_2 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{B}^{2+} + 2\ \mathrm{OH}^{-} + \mathrm{H}_2\mathrm{O}</math>


jako u jednosytných zásad a dvousytných kyselin předpokládáme:
as we assume for monosaturated bases and dibasic acids:
*úplnou disociaci, tedy <math>c_{\mathrm{B(OH)}_2} = [\mathrm{B}^{2+}];</math>
*complete dissociation, i.e. <math>c_{\mathrm{B(OH)}_2} = [\mathrm{B}^{2+}];</math>
*koncentrace vzniklého <math>\mathrm{B}^{2+}</math> a koncentrace hydroxidových aniontů je v poměru 1:2, tedy <math>[\mathrm{OH}^{-}] = 2 \cdot [\mathrm{B}^{2+}]</math>, podle předchozího předpokladu navíc <math>[\mathrm{OH}^{-}] = 2 \cdot c_{\mathrm{B(OH)}_2}</math>
*concentration of the formed <math>\mathrm{B}^{2+}</math> and the concentration of hydroxide anions is in the ratio 1:2, i.e.<math>[\mathrm{OH}^{-}] = 2 \cdot [\mathrm{B}^{2+}]</math>, in addition, according to the previous assumption <math>[\mathrm{OH}^{-}] = 2 \cdot c_{\mathrm{B(OH)}_2}</math>
*hydroxidové anionty odčerpávají z prostředí oxoniové kationty, <math>[\mathrm{H}_3\mathrm{O}^{+}] = \frac{K_w}{[\mathrm{OH}^{-}]}</math>.
*hydroxide anions drain oxonium cations from the environment, <math>[\mathrm{H}_3\mathrm{O}^{+}] = \frac{K_w}{[\mathrm{OH}^{-}]}</math>.
Poté odvodíme
Then we derive


<math>- \log [\mathrm{H}_3\mathrm{O}^{+}] =- \log \frac{K_w}{[\mathrm{OH}^{-}]} = \log\ [\mathrm{OH}^{-}] - \log K_w = \log (2 \cdot c_{\mathrm{B(OH)}_2}) - \log K_w = \log 2 + \log\ c_{\mathrm{B(OH)}_2} - \log K_w</math>
<math>- \log [\mathrm{H}_3\mathrm{O}^{+}] =- \log \frac{K_w}{[\mathrm{OH}^{-}]} = \log\ [\mathrm{OH}^{-}] - \log K_w = \log (2 \cdot c_{\mathrm{B(OH)}_2}) - \log K_w = \log 2 + \log\ c_{\mathrm{B(OH)}_2} - \log K_w</math>


a pH při 25&nbsp;°C se spočítá podle vzorce
and the pH at 25 °C is calculated according to the formula
  <math>\mathrm{pH} = 14 + \log 2 + \log\ c_{\mathrm{B(OH)}_2}.</math>
  <math>\mathrm{pH} = 14 + \log 2 + \log\ c_{\mathrm{B(OH)}_2}.</math>
<noinclude>
<noinclude>


==Odkazy==
==References==
===Související články===
===Related articles===
*[[pH slabých kyselin a zásad]]
*[[pH of weak acids and bases]]
*[[pH-metrie]]
*[[pH-metry]]
*[[Měření pH]]
*[[pH measurment]]
*[[Pufry, pufrační kapacita, oxidoredukce, elektrodové děje|pH pufrů]]
*[[Buffers, buffering capacity, oxidation and reduction, electrode processes]]
*[[pH moči]]
*[[pH of urine]]
*[[pH solí]]
*[[pH of salts]]
</noinclude>[[Kategorie:Vložené články]] [[Kategorie:Biochemie]] [[Kategorie:Chemie]]
</noinclude>[[Category:Inserted articles]] [[Category:Biochemistry]] [[Category:Chemistry]]

Revision as of 23:56, 17 December 2022

When calculating pH, it is always necessary to consider what is the source of oxonium cations in a given environment.

Strong monosaturated acids

For strong monosaturated acids the dissociation follows the equation

For the calculation we assume:

  • the substance quantity of according to the above equation will be the same as , which, given an identical volume, is also true for the concentration, i.e. ;
  • all acid - because it is a strong acid - is converted into a , therefore we will mark its concentration, i.e.

Let's deduce:

and to calculate the pH we get the formula


Strong monosaturated bases

For strong monosaturated bases the dissociation follows the equation

We assume, as in the case of strong monosaturates, that:

  • the amount, or concentration, of hydroxide ions and the resulting is the same according to the above chemical equation, i.e. ;
  • dissociation occurs completely, i.e.

The calculation is therefore analogous, we just have to remember that unlike acids, the base is not a source of oxonium cations, but takes oxonium cations from the environment (see the theory of acids and bases), so we add from the equation for the ionic product of water:

and from these assumptions, we deduce

Calculate the pH at 25 °C using the formula


Strong dibasic acids

Strong dibasic acids dissociate according to the equation

we assume, then:

  • complete dissociation, i.e.
  • however, the amount of oxonium cations and the amount of formed is - in contrast to monosaturated acids - in a ratio of 1:2, i.e.

From this we derive

and the pH is calculated according to the formula


Strong dibasic bases

Strong dibasic bases dissociate according to the equation

as we assume for monosaturated bases and dibasic acids:

  • complete dissociation, i.e.
  • concentration of the formed and the concentration of hydroxide anions is in the ratio 1:2, i.e., in addition, according to the previous assumption
  • hydroxide anions drain oxonium cations from the environment, .

Then we derive

and the pH at 25 °C is calculated according to the formula



References

Related articles