PH of strong acids and bases: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
When calculating pH, it is always necessary to consider what is the source of oxonium cations in a given environment. | When calculating [[pH]], it is always necessary to consider what is the source of oxonium cations in a given environment. | ||
===Strong monosaturated acids=== | ===Strong monosaturated acids=== | ||
For strong monosaturated acids the dissociation follows the equation | For '''strong monosaturated acids''' the dissociation follows the equation | ||
<math>\mathrm{HA} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{A}^{-} + \mathrm{H}_3\mathrm{O}^{+}.</math> | <math>\mathrm{HA} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{A}^{-} + \mathrm{H}_3\mathrm{O}^{+}.</math> | ||
For the calculation we assume: | For the calculation we assume: | ||
* [[ | * [[the substance quantity]] of <math>\mathrm{H}_3\mathrm{O}^{+}</math> according to the above equation will be the same as <math>\mathrm{A}^{-}</math>, which, given an identical volume, is also true for the concentration, i.e. <math>[\mathrm{H}_3\mathrm{O}^{+}] = [\mathrm{A}^{-}]</math>; | ||
* | * all acid - because it is a strong acid - is converted into <math>\mathrm{A}^{-}</math> a <math>\mathrm{H}_3\mathrm{O}^{+}</math>, therefore we will mark <math>[\mathrm{A}^{-}]</math> its concentration, i.e. <math>[\mathrm{A}^{-}] = c_{\mathrm{HA}}</math> | ||
Let's deduce: | |||
<math>\mathrm{pH} = -\log\ [\mathrm{H}_3\mathrm{O}^{+}] = -\log\ [\mathrm{A}^{-}] = -\log\ c_{\mathrm{HA}},</math> | <math>\mathrm{pH} = -\log\ [\mathrm{H}_3\mathrm{O}^{+}] = -\log\ [\mathrm{A}^{-}] = -\log\ c_{\mathrm{HA}},</math> | ||
and to calculate the pH we get the formula | |||
<math>\mathrm{pH} = -\log\ c_{\mathrm{HA}}.</math> | <math>\mathrm{pH} = -\log\ c_{\mathrm{HA}}.</math> | ||
=== | ===Strong monosaturated bases=== | ||
For '''strong monosaturated bases''' the dissociation follows the equation | |||
<math>\mathrm{BOH} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{B}^{+} + \mathrm{OH}^{-} + \mathrm{H}_2\mathrm{O}</math> | <math>\mathrm{BOH} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{B}^{+} + \mathrm{OH}^{-} + \mathrm{H}_2\mathrm{O}</math> | ||
We assume, as in the case of strong monosaturates, that: | |||
* | *the amount, or concentration, of hydroxide ions and the resulting <math>\mathrm{B}^{+}</math> is the same according to the above chemical equation, i.e. <math>[\mathrm{OH}^{-}] = [\mathrm{B}^{+}]</math>; | ||
* | *dissociation occurs completely, i.e. <math>[\mathrm{B}^{+}] = c_{\mathrm{BOH}}.</math> | ||
The calculation is therefore analogous, we just have to remember that unlike acids, the base is not a source of oxonium cations, but takes oxonium cations from the environment (see the [[theory of acids and bases]]), so we add from the equation for the ionic product of [[water]]: | |||
*<math>[\mathrm{H}_3\mathrm{O}^{+}] = \frac{K_w}{[\mathrm{OH}^{-}]}</math> | *<math>[\mathrm{H}_3\mathrm{O}^{+}] = \frac{K_w}{[\mathrm{OH}^{-}]}</math> | ||
and from these assumptions, we deduce | |||
<math>\mathrm{pH} = -\log\ [\mathrm{H}_3\mathrm{O}^{+}] = -\log\ \frac{K_w}{[\mathrm{OH}^{-}]} = \log\ [\mathrm{OH}^{-}] - \log K_w = \log\ [\mathrm{B}^{+}] - \log K_w = \log c_{\mathrm{BOH}} -\log K_w.</math> | <math>\mathrm{pH} = -\log\ [\mathrm{H}_3\mathrm{O}^{+}] = -\log\ \frac{K_w}{[\mathrm{OH}^{-}]} = \log\ [\mathrm{OH}^{-}] - \log K_w = \log\ [\mathrm{B}^{+}] - \log K_w = \log c_{\mathrm{BOH}} -\log K_w.</math> | ||
Calculate the pH at 25 °C using the formula | |||
<math>\mathrm{pH} = 14 + \log\ c_{\mathrm{BOH}}.</math> | <math>\mathrm{pH} = 14 + \log\ c_{\mathrm{BOH}}.</math> | ||
=== | ===Strong dibasic acids=== | ||
''' | '''Strong dibasic acids''' dissociate according to the equation | ||
<math>\mathrm{H}_2\mathrm{A} + 2\ \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{A}^{2-} + 2\ \mathrm{H}_3\mathrm{O}^{+},</math> | <math>\mathrm{H}_2\mathrm{A} + 2\ \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{A}^{2-} + 2\ \mathrm{H}_3\mathrm{O}^{+},</math> | ||
we assume, then: | |||
* | *complete dissociation, i.e. <math>c_{\mathrm{H}_2\mathrm{A}} = [\mathrm{A}^{2-}];</math> | ||
* | *however, the amount of oxonium cations and the amount of formed <math>\mathrm{A}^{2-}</math> is - in contrast to monosaturated acids - in a ratio of 1:2, i.e. <math>[\mathrm{H}_3\mathrm{O}^{+}] = 2 \cdot c_{\mathrm{H}_2\mathrm{A}}.</math> | ||
From this we derive <math>\mathrm{pH} = -\log\ [\mathrm{H}_3\mathrm{O}^{+}] = -\log\ [\mathrm{A}^{2-}] = -\log (2 \cdot c_{\mathrm{H}_2\mathrm{A}}) = -\log 2 - \log c_{\mathrm{H}_2\mathrm{A}}</math> | |||
and the pH is calculated according to the formula | |||
<math> \mathrm{pH} = - \log\ c_{\mathrm{H}_2\mathrm{A}} - \log\ 2.</math> | <math> \mathrm{pH} = - \log\ c_{\mathrm{H}_2\mathrm{A}} - \log\ 2.</math> | ||
=== | ===Strong dibasic bases=== | ||
'''Strong dibasic bases''' dissociate according to the equation | |||
<math>\mathrm{B(OH)}_2 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{B}^{2+} + 2\ \mathrm{OH}^{-} + \mathrm{H}_2\mathrm{O}</math> | <math>\mathrm{B(OH)}_2 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{B}^{2+} + 2\ \mathrm{OH}^{-} + \mathrm{H}_2\mathrm{O}</math> | ||
as we assume for monosaturated bases and dibasic acids: | |||
* | *complete dissociation, i.e. <math>c_{\mathrm{B(OH)}_2} = [\mathrm{B}^{2+}];</math> | ||
* | *concentration of the formed <math>\mathrm{B}^{2+}</math> and the concentration of hydroxide anions is in the ratio 1:2, i.e.<math>[\mathrm{OH}^{-}] = 2 \cdot [\mathrm{B}^{2+}]</math>, in addition, according to the previous assumption <math>[\mathrm{OH}^{-}] = 2 \cdot c_{\mathrm{B(OH)}_2}</math> | ||
* | *hydroxide anions drain oxonium cations from the environment, <math>[\mathrm{H}_3\mathrm{O}^{+}] = \frac{K_w}{[\mathrm{OH}^{-}]}</math>. | ||
Then we derive | |||
<math>- \log [\mathrm{H}_3\mathrm{O}^{+}] =- \log \frac{K_w}{[\mathrm{OH}^{-}]} = \log\ [\mathrm{OH}^{-}] - \log K_w = \log (2 \cdot c_{\mathrm{B(OH)}_2}) - \log K_w = \log 2 + \log\ c_{\mathrm{B(OH)}_2} - \log K_w</math> | <math>- \log [\mathrm{H}_3\mathrm{O}^{+}] =- \log \frac{K_w}{[\mathrm{OH}^{-}]} = \log\ [\mathrm{OH}^{-}] - \log K_w = \log (2 \cdot c_{\mathrm{B(OH)}_2}) - \log K_w = \log 2 + \log\ c_{\mathrm{B(OH)}_2} - \log K_w</math> | ||
and the pH at 25 °C is calculated according to the formula | |||
<math>\mathrm{pH} = 14 + \log 2 + \log\ c_{\mathrm{B(OH)}_2}.</math> | <math>\mathrm{pH} = 14 + \log 2 + \log\ c_{\mathrm{B(OH)}_2}.</math> | ||
<noinclude> | <noinclude> | ||
== | ==References== | ||
=== | ===Related articles=== | ||
*[[pH | *[[pH of weak acids and bases]] | ||
*[[pH- | *[[pH-metry]] | ||
*[[ | *[[pH measurment]] | ||
*[[ | *[[Buffers, buffering capacity, oxidation and reduction, electrode processes]] | ||
*[[pH | *[[pH of urine]] | ||
*[[pH | *[[pH of salts]] | ||
</noinclude>[[ | </noinclude>[[Category:Inserted articles]] [[Category:Biochemistry]] [[Category:Chemistry]] |
Revision as of 23:56, 17 December 2022
When calculating pH, it is always necessary to consider what is the source of oxonium cations in a given environment.
Strong monosaturated acids
For strong monosaturated acids the dissociation follows the equation
For the calculation we assume:
- the substance quantity of according to the above equation will be the same as , which, given an identical volume, is also true for the concentration, i.e. ;
- all acid - because it is a strong acid - is converted into a , therefore we will mark its concentration, i.e.
Let's deduce:
and to calculate the pH we get the formula
Strong monosaturated bases
For strong monosaturated bases the dissociation follows the equation
We assume, as in the case of strong monosaturates, that:
- the amount, or concentration, of hydroxide ions and the resulting is the same according to the above chemical equation, i.e. ;
- dissociation occurs completely, i.e.
The calculation is therefore analogous, we just have to remember that unlike acids, the base is not a source of oxonium cations, but takes oxonium cations from the environment (see the theory of acids and bases), so we add from the equation for the ionic product of water:
and from these assumptions, we deduce
Calculate the pH at 25 °C using the formula
Strong dibasic acids
Strong dibasic acids dissociate according to the equation
we assume, then:
- complete dissociation, i.e.
- however, the amount of oxonium cations and the amount of formed is - in contrast to monosaturated acids - in a ratio of 1:2, i.e.
From this we derive
and the pH is calculated according to the formula
Strong dibasic bases
Strong dibasic bases dissociate according to the equation
as we assume for monosaturated bases and dibasic acids:
- complete dissociation, i.e.
- concentration of the formed and the concentration of hydroxide anions is in the ratio 1:2, i.e., in addition, according to the previous assumption
- hydroxide anions drain oxonium cations from the environment, .
Then we derive
and the pH at 25 °C is calculated according to the formula