Biophysics of hearing: Difference between revisions
Feedback

From WikiLectures

No edit summary
Line 1: Line 1:
[[Sluch]] je schopnost živočichů vnímat zvuk pomocí specializovaného orgánu – [[Ucho|ucha]]. Rozeznáváme dva typy zvukového vedení: '''vedení kostní''' a '''vzdušné'''.
Hearing is the ability of animals to perceive sound using a specialized organ - the ear. We distinguish two types of sound conduction: bone conduction and air conduction.


Vedením vzdušným nazýváme vedení zvuku cestou zvukovod bubínek [[sluchové kůstky]] oválné okénko. Mimo to je možné rozkmitat tekutiny ve [[Vnitřní ucho|vnitřním uchu]] přímým přenosem vibrací [[Kosti lebky|lebečních kostí]] – v tomto případě mluvíme o vedení kostním. Sluchový práh pro kostní vedení je u zdravého člověka asi o 40 dB výše než práh vzdušného vedení, proto se kostní vedení uplatňuje především tam, kde je porušeno vedení vzdušné. Zdravý člověk využívá kostního vedení pří vnímání vlastního hlasu nebo velmi silných zvuků.
Air conduction is the conduction of sound through the ear canal ear drum auditory ossicles oval window. In addition, it is possible to oscillate the fluids in the inner ear by direct transmission of vibrations of the skull bones - in this case we are talking about bone conduction. The hearing threshold for bone conduction in a healthy person is about 40 dB higher than the threshold for air conduction, so bone conduction is mainly used where air conduction is impaired. A healthy person uses bone conduction when perceiving his own voice or very strong sounds.


Lidské ucho je schopno vnímat zvuky o frekvenci '''16 Hz–20 kHz''', hladině '''0 dB''' ('''[[Práh sluchu a sluchové pole|sluchový práh]]''') až '''130 dB''' ('''[[práh bolesti]]''').
The human ear is able to perceive sounds with a frequency of 16 Hz–20 kHz , a level of 0 dB (hearing threshold) to 130 dB (pain threshold).


== Stručná anatomie sluchového ústrojí ==
== Brief anatomy of the auditory system ==
[[Soubor:Mellomore.svg|náhled|vpravo|200px|Sluchové kůstky]]
For a correct understanding of the hearing process and for a simpler description of the individual phases of sound conduction by the ear, it is necessary to at least lightly outline the anatomical structure.


Pro správné pochopení procesu slyšení a pro jednodušší popis jednotlivých fází vedení zvuku uchem je nutné alespoň lehce nastínit anatomickou stavbu.
The human ear consists of three parts:
# External ear (auris externa)
# Middle ear (auris media)
# Inner ear (auris interna)


Lidské ucho se skládá ze tří částí:
=== External ear ===
# [[Zevní ucho]] (auris externa)
The external ear consists of the pinna (auricula), the external ear canal (meatus acusticus externus) and the ear drum (membrana tympani).
# [[Střední ucho]] (auris media)
# [[Vnitřní ucho]] (auris interna)


=== Zevní ucho ===
The auditory pinna is rudimentary in humans and its function is minimal. Unlike other mammals, the muscles of the human auricle are without functional significance. Their innervation is from n. VII.
[[Zevní ucho]] se skládá z '''boltce''' (auricula), '''zevního zvukovodu''' (meatus acusticus externus) a '''bubínku''' (membrana tympani).


Sluchový boltec je u člověka rudimentární a jeho funkce je minimální. Na rozdíl od jiných savců jsou [[sval]]y lidského boltce bez funkčního významu. Jejich inervace je z [[Nervus facialis|n. VII]].
The external ear canal is a partly cartilaginous and partly bony tube, beginning at the porus acusticus externus and ending at the eardrum. Its base is the os tympanicum . The narrowest point (isthmus) of the external ear canal is at the interface between the cartilaginous and bony sections and has a diameter of 6–8 mm. The total length of the external ear canal is 24–35 mm.
[[Soubor:HumanEar.jpg|náhled|vpravo|200px|Sluchové ústrojí]]


Zevní zvukovod je částečně chrupavčitá a částečně kostěná trubice, začínající v porus acusticus externus a zakončená bubínkem. Jejím podkladem je '''[[Os temporale#Pars tympanica|os tympanicum]]'''. Nejužší místo (isthmus) zevního zvukovodu je na rozhraní chrupavčitého a kostěného úseku a má průměr 6–8 mm. Celková délka zevního zvukovodu je 24–35 mm.
The tympanic membrane separates the external ear canal from the middle ear cavity. It is a thin oval membrane (9 x 10 mm) with a thickness of 0.1 mm. The auditory ossicle, the malleus, connects to the eardrum in the middle ear.


Bubínek odděluje zevní zvukovod od středoušní dutiny. Jedná se o tenkou oválnou membránu (9 x 10 mm) s tloušťkou 0,1 mm. Na bubínek se ve středním uchu napojuje sluchová kůstka kladívko.
=== Middle ear ===
The middle ear is located in the middle ear cavity (cavitas tympanica). It contains 3 auditory ossicles : malleus , incus , stapes . _ The auditory ossicles are interconnected. The malleus is attached to the eardrum, followed by the anvil, on which the stirrup fits, which is connected to the membrane of the fenestra vestibuli (fenestra ovalis). The middle ear is connected to the nasopharynx by the Eustachian tube (tuba auditory). Auditory muscles also play an important role in the middle ear: the tensor tympani muscle (innervation of the V and VII nerves ),m. stapedius (innervation of n. VII ).


=== Střední ucho ===
=== Inner ear ===
[[Střední ucho]] je lokalizováno ve '''[[Středoušní dutina|středoušní dutině]]''' (cavitas tympanica). Obsahuje 3 sluchové kůstky: '''kladívko''' ([[malleus]]), '''kovadlinka''' ([[incus]]), '''třmínek''' ([[stapes]]). Sluchové kůstky jsou vzájemně propojené. Kladívko přiléhá k bubínku, následuje kovadlinka, na níž nasedá třmínek, který je spojen s blánou '''fenestra vestibuli''' (fenestra ovalis).
The inner ear includes a bony labyrinth (labyrinthus osseus) and within it a membranous labyrinth (labyrinthus membranaceus), which contains endolymph . The labyrinth has an equilibrium part , consisting of the vestibule and three semicircular canals, and an auditory part, which is represented by a bony and membranous cochlea ( cochlea ) with a receptive auditory organ of Corti, located on the basilar membrane (length about 3 cm). The auditory pathway runs from the ganglion cochleare to the upper part of the temporal lobe ( the convolutions of Heschl ).
Střední ucho je spojeno s nosohltanem '''[[Eustachova trubice|Eustachovou trubicí]]''' (tuba auditiva). Důležitou funkci ve středním uchu zastávají také sluchové svaly: [[m. tensor tympani]] (inervace [[Nervus trigeminus|n. V.]] a [[Nervus facialis|VII]].), [[m. stapedius]] (inervace [[Nervus facialis|n. VII]]).
=== Structue of the organ of Corti ===
[[Soubor:Středníucho.png|náhled|vpravo|200px|Střední ucho]]
The organ of Corti (organum spirale) is a complex system of supporting and sensory cells . The basis of the organ is two rows of supporting cylindrical pillar cells ( cells of Corti ), which together form the tunnel of Corti . Sensory (hair) cells are located on either side of the pillar. Medially there is one row ( inner hair cells ), laterally there are three to four rows of hair cells ( outer hair cells ). There are 1,500 inner hair cells. Their apical surface contains 50–60 stereocilia , which are in contact with the membrana tectoria. Outer hair cells are found in the number of 12–15,000, they are also equipped with stereocilia. In the basal part, they are in contact with afferent and efferent fibers.


=== Vnitřní ucho ===
== Biophysics of hearing ==
[[Vnitřní ucho]] zahrnuje '''kostěný labyrint''' (labyrinthus osseus) a v něm '''blanitý labyrint''' (labyrinthus membranaceus), jenž obsahuje '''[[Endolymfa|endolymfu]]'''. Labyrint má [[Vestibulární aparát|část rovnovážnou]], složenou z vestibulu a tří polokruhovitých kanálků, a část sluchovou, kterou představuje kostěný a blanitý hlemýžď ([[cochlea]]) s recepčním sluchovým Cortiho orgánem, umístěným na basilární membráně (délka asi 3 cm).
The sound wave is directed through the pinna into the external auditory canal. The pinna, as already mentioned, is rudimentary, and its loss will not fundamentally affect hearing. The external auditory meatus carries the captured sounds to the eardrum, which impinges on it and vibrates it.
[[Sluchová dráha]] vede z ganglion cochleare do horní části [[Temporální lalok|temporálního laloku]] ('''[[Heschlovy závity]]''').
[[Soubor:Organ of corti.svg|náhled|vpravo|200px|Cortiho orgán]]
=== Stavba Cortiho orgánu ===
'''[[Cortiho orgán]]''' (organum spirale) je složitá soustava podpůrných a smyslových [[Buňka|buněk]]. Základem orgánu jsou dvě řady podpůrných cylindrických '''pilířových buněk''' ([[Cortiho buňky]]), které společně vytváří '''Cortiho tunel'''. Po obou stranách pilířových buněk jsou uloženy '''[[Vláskové buňky|smyslové (vláskové) buňky]]'''. Mediálně je jedna řada ('''vnitřní vláskové buňky'''), laterálně jsou tři až čtyři řady vláskových buněk ('''zevní vláskové buňky'''). Vnitřních vláskových buněk je 1500. Jejich apikální povrch obsahuje 50–60 [[Stereocilie|stereocilií]], které jsou v kontaktu s '''membrana tectoria'''. Zevní vláskové buňky se nacházejí v počtu 12–15 000, jsou taktéž opatřeny stereociliemi. V basální části jsou v kontaktu s [[aferentní]]mi i [[eferentní]]mi vlákny.


== Biofyzika slyšení ==
The deflections of the eardrum are very small (at a frequency of 1 kHz, about 10 −11 m). The area of ​​the eardrum is about 55 mm 2 and the area of ​​the membrane window to which the vibrations are brought by means of the ossicles is only 3 mm 2 . If we assume that the energy passing through both surfaces is the same, the acoustic pressure reaches the surface of the oval window many times greater (about 22x). This is necessary to overcome the acoustic resistance of the fluid in the cochlea. As auxiliary systems, the Eustachian tube and ear muscles are used in the middle ear, which equalize the pressure on the eardrum from the inside to prevent it from rupturing.
[[Zvuk|Zvuková vlna]] je směrována ušním boltcem do zevního zvukovodu. Ušní boltec, jak již bylo zmíněno, je rudimentární, a jeho ztráta zásadně neovlivní slyšení. Zevní zvukovod přivádí zachycené zvuky k bubínku, které do něj naráží a rozechvívají ho.


Výchylky bubínku jsou velmi malé (při frekvenci 1 kHz, asi 10<sup>−11</sup> m). Plocha bubínku je asi 55 mm<sup>2</sup> a plocha membránového okénka na něž jsou kmity přivedeny pomocí ušních kůstek, je pouhé 3 mm<sup>2</sup>. Předpokládáme-li, že energie procházející oběma plochami je stejná, akustický tlak se dostává na plochu oválného okénka mnohonásobně větší (asi 22x). To je nezbytné k překonání akustického odporu tekutiny v hlemýždi. Jako pomocné systémy se ve středním uchu uplatňují Eustachova trubice a ušní svaly, které zevnitř vyrovnávají tlak na bubínek, aby nedošlo k jeho protržení.
Oscillation of the oval window is caused by vibrations in the endolymph (incompressible fluid), which are further amplified by vibrations from the bone conduction, which reaches it through the bones of the skull . With its vibrations, the endolymph vibrates the membrana tectoria, which subsequently irritates the stereocilia of the inner hair cells. These release a small amount of mediator (probably glutamate ) in the basal part of the cell, which creates a nerve signal.


Rozkmitání oválného okénka způsobí vibrace v endolymfě (nestlačitelná kapalina), které jsou ještě zesíleny vibracemi z kostního vedení, jež se sem dostává přes kosti [[Lebka|lebky]]. Endolymfa svými vibracemi rozkmitává membrana tectoria, která následně dráždí stereocilie vnitřních vláskových buněk. Ty uvolňují malé množství [[mediátor]]u (pravděpod. [[glutamát]]u) v bazální části buňky, čímž vzniká [[nervový signál]].
The outer hair cells have an amplifier function. When they are irritated, there is an elongation and subsequent contraction of the cells, which increases the sensitivity of the inner hair cells. This mechanism allows very quiet sounds to be heard.


Zevní vláskové buňky mají funkci zesilovače. Při jejich podráždění zde dochází k prodloužení a následnému smrštění buněk, čímž se zvyšuje citlivosti vnitřních vláskových buněk. Tento mechanismus umožňuje slyšet velmi tiché zvuky.
== Links ==
 
=== External links ===
== Odkazy ==
<noinclude>
=== Externí odkazy ===
* [https://www.youtube.com/watch?v=PeTriGTENoc Přenos zvuku uchem a zpracování]
* [https://www.youtube.com/watch?v=flIAxGsV1q0 Zjednodušený princip funkce ucha]
=== Použitá literatura ===
=== Použitá literatura ===
</noinclude>
* {{Citace
* {{Citace
| typ = kniha
| typ = kniha

Revision as of 12:31, 23 December 2022

Hearing is the ability of animals to perceive sound using a specialized organ - the ear. We distinguish two types of sound conduction: bone conduction and air conduction.

Air conduction is the conduction of sound through the ear canal – ear drum – auditory ossicles – oval window. In addition, it is possible to oscillate the fluids in the inner ear by direct transmission of vibrations of the skull bones - in this case we are talking about bone conduction. The hearing threshold for bone conduction in a healthy person is about 40 dB higher than the threshold for air conduction, so bone conduction is mainly used where air conduction is impaired. A healthy person uses bone conduction when perceiving his own voice or very strong sounds.

The human ear is able to perceive sounds with a frequency of 16 Hz–20 kHz , a level of 0 dB (hearing threshold) to 130 dB (pain threshold).

Brief anatomy of the auditory system

For a correct understanding of the hearing process and for a simpler description of the individual phases of sound conduction by the ear, it is necessary to at least lightly outline the anatomical structure.

The human ear consists of three parts:

  1. External ear (auris externa)
  2. Middle ear (auris media)
  3. Inner ear (auris interna)

External ear

The external ear consists of the pinna (auricula), the external ear canal (meatus acusticus externus) and the ear drum (membrana tympani).

The auditory pinna is rudimentary in humans and its function is minimal. Unlike other mammals, the muscles of the human auricle are without functional significance. Their innervation is from n. VII.

The external ear canal is a partly cartilaginous and partly bony tube, beginning at the porus acusticus externus and ending at the eardrum. Its base is the os tympanicum . The narrowest point (isthmus) of the external ear canal is at the interface between the cartilaginous and bony sections and has a diameter of 6–8 mm. The total length of the external ear canal is 24–35 mm.

The tympanic membrane separates the external ear canal from the middle ear cavity. It is a thin oval membrane (9 x 10 mm) with a thickness of 0.1 mm. The auditory ossicle, the malleus, connects to the eardrum in the middle ear.

Middle ear

The middle ear is located in the middle ear cavity (cavitas tympanica). It contains 3 auditory ossicles : malleus , incus , stapes . _ The auditory ossicles are interconnected. The malleus is attached to the eardrum, followed by the anvil, on which the stirrup fits, which is connected to the membrane of the fenestra vestibuli (fenestra ovalis). The middle ear is connected to the nasopharynx by the Eustachian tube (tuba auditory). Auditory muscles also play an important role in the middle ear: the tensor tympani muscle (innervation of the V and VII nerves ),m. stapedius (innervation of n. VII ).

Inner ear

The inner ear includes a bony labyrinth (labyrinthus osseus) and within it a membranous labyrinth (labyrinthus membranaceus), which contains endolymph . The labyrinth has an equilibrium part , consisting of the vestibule and three semicircular canals, and an auditory part, which is represented by a bony and membranous cochlea ( cochlea ) with a receptive auditory organ of Corti, located on the basilar membrane (length about 3 cm). The auditory pathway runs from the ganglion cochleare to the upper part of the temporal lobe ( the convolutions of Heschl ).

Structue of the organ of Corti

The organ of Corti (organum spirale) is a complex system of supporting and sensory cells . The basis of the organ is two rows of supporting cylindrical pillar cells ( cells of Corti ), which together form the tunnel of Corti . Sensory (hair) cells are located on either side of the pillar. Medially there is one row ( inner hair cells ), laterally there are three to four rows of hair cells ( outer hair cells ). There are 1,500 inner hair cells. Their apical surface contains 50–60 stereocilia , which are in contact with the membrana tectoria. Outer hair cells are found in the number of 12–15,000, they are also equipped with stereocilia. In the basal part, they are in contact with afferent and efferent fibers.

Biophysics of hearing

The sound wave is directed through the pinna into the external auditory canal. The pinna, as already mentioned, is rudimentary, and its loss will not fundamentally affect hearing. The external auditory meatus carries the captured sounds to the eardrum, which impinges on it and vibrates it.

The deflections of the eardrum are very small (at a frequency of 1 kHz, about 10 −11 m). The area of ​​the eardrum is about 55 mm 2 and the area of ​​the membrane window to which the vibrations are brought by means of the ossicles is only 3 mm 2 . If we assume that the energy passing through both surfaces is the same, the acoustic pressure reaches the surface of the oval window many times greater (about 22x). This is necessary to overcome the acoustic resistance of the fluid in the cochlea. As auxiliary systems, the Eustachian tube and ear muscles are used in the middle ear, which equalize the pressure on the eardrum from the inside to prevent it from rupturing.

Oscillation of the oval window is caused by vibrations in the endolymph (incompressible fluid), which are further amplified by vibrations from the bone conduction, which reaches it through the bones of the skull . With its vibrations, the endolymph vibrates the membrana tectoria, which subsequently irritates the stereocilia of the inner hair cells. These release a small amount of mediator (probably glutamate ) in the basal part of the cell, which creates a nerve signal.

The outer hair cells have an amplifier function. When they are irritated, there is an elongation and subsequent contraction of the cells, which increases the sensitivity of the inner hair cells. This mechanism allows very quiet sounds to be heard.

Links

External links

Použitá literatura

Related articles