Hardy-Weinberg equilibrium: Difference between revisions
Feedback

From WikiLectures

(Created page with "'''Hardy-Weinbergova rovnováha''' (také '''Hardy-Weinbergův zákon''') je teoretické rovnovážné rozložení alel v populaci, které odvodil Godfr...")
 
No edit summary
 
Line 1: Line 1:
'''Hardy-Weinbergova rovnováha''' (také '''Hardy-Weinbergův zákon''') je teoretické rovnovážné rozložení [[alela|alel]] v [[populace|populaci]], které odvodil Godfrey Harold Hardy, britský matematik a přítel genetika Reginalda Punetta, a nezávisle na něm německý lékař Wilhelm Weinberg v roce 1908.
'''Hardy–Weinberg equilibrium''' (also '''Hardy–Weinberg law''') is a theoretical equilibrium distribution of alleles in a population derived by Godfrey Harold Hardy, a British mathematician and friend of geneticist Reginald Punett, and independently by German physician Wilhelm Weinberg in 1908.


==Rovnováha pro dvě alely==
==Equilibrium for two alleles==
[[Soubor:Hardy-Weinberg.svg|thumb|300px|Hardy-Weinberova rovnováha pro dvě alely.]]
It describes the frequency of genotypes in an idealized population. The model was formulated under several assumptions:
Popisuje frekvenci genotypů v idealizované populaci. Model byl formulován za nákladě několika předpokladů:


*Populace je dostatečně velká, takže lze při sestavování modelu předpokládat se zjednodušujícím předpokladem nekonečně velké populace. V praxi postačuje, aby byla populace tak velká, že lze zanedbat [[genový drift]].
*The population is large enough that the simplifying assumption of an infinitely large population can be assumed when building the model. In practice, it is sufficient for the population to be so large that gene drift can be neglected.
*V populaci neprobíhá selekce.
*There is no selection in the population.
*V populaci neprobíhají mutace.
*Mutations do not occur in the population.
*Neprobíhá ani emigrace ani imigrace.
*There is neither emigration nor immigration.
*Areál obývaný populací je takový, že se může jakýkoliv jedinec křížit s jakýmkoliv jiným jedincem.
*The area occupied by a population is such that any individual can interbreed with any other individual.
*Jedinci jsou oboupohlavní.
*Individuals are representatives of both sexes.
 
[[File:Hardy-Weinberg.svg|thumb|Hardy–Weinberg principle for two alleles]]
Předpokládejme nyní, že jsou v populaci jen dvě alely sledovaného genu označené ''A'' (dominantní) a ''a'' (recesivní). Frekvenci (relativní četnost) alely ''A'' označíme ''p'', frekvenci alely ''a'' označíme ''q''. Protože předpokládáme, že jsou v populaci jen tyto dvě alely, musí platit:
Let us now assume that there are only two alleles of the observed gene in the population, labeled ''A (dominant)'' and ''a (recessive)''. The frequency (relative frequency) of allele ''A'' is denoted by ''p'', the frequency of allele ''a'' is denoted by ''q''. Since we assume that there are only these two alleles in the population, it must hold:


::<math>p+q=1</math>
::<math>p+q=1</math>


Pokud má vzniknout při křížení rodičů nový potomek, převezme od každého náhodně vybraného rodiče jednu jeho alelu. Pravděpodobnost, že náhodně vybraný rodič vytvoří gametu s danou alelou odpovídá její populační frekvenci. Tím lze dokonce odhlédnout od existence rodičů a přejít k modelu '''gametické urny'''. Pro konečnou populaci by pro dvě sledované gamety vznikla gametická urna tak, že by každý jedinec přispěl svými alelami, tedy homozygot by vložil dvě alely ''A'' resp. ''a'', heterozygot po jedné z alel ''A'' a ''a''. Nový jedinec pak vznikne tak, že se z této urny vylosují dvě alely. Předpoklad nekonečně velké populace zajišťuje, že se odebráním jedné alely z gametické urny nezmění četnost alel v urně. Stále bude platit, že z gametické urny je alela ''A'' vylosována s pravděpodobností ''p'' a alela ''a'' s pravděpodobností ''q''.
If a new offspring is to arise from the crossing of parents, it will take over one of its alleles from each randomly selected parent. The probability that a randomly selected parent will produce a gamete with a given allele corresponds to its population frequency. In this way, one can even ignore the existence of parents and move to the '''gametic urn model'''. For the final population, a gametic urn would be created for the two monitored gametes in such a way that each individual would contribute its alleles, i.e. a homozygote would insert two alleles ''A'' or ''a'', heterozygote for one of the alleles ''A'' and ''a''. A new individual is then created by drawing two alleles from this urn. The assumption of an infinitely large population ensures that removing one allele from a gametic urn does not change the frequency of alleles in the urn. It will still be true that allele ''A'' is drawn from the gametic urn with probability ''p'' and allele ''a'' with probability ''q''.


Předpokládejme nyní, že losováním z gametické urny vzniká nový jedinec. Otázkou je, s jakou četností budou vznikat jednotlivé kombinace alel. Odpověď je snadná, protože z předpokladu nekonečnosti základní populace představuje generování dvou alel (případně alely "od matky" a "od otce") nezávislé náhodné jevy. Tedy:
Now suppose that a new individual is created by drawing from the gametic urn. The question is the frequency with which individual combinations of alleles will arise. The answer is easy, because from the assumption of the infinity of the basic population, the generation of two alleles (or alleles "from the mother" and "from the father") is an independent random phenomenon. Thus:


*Pravděpodobnost, že vznikne jedinec s genotypem ''AA'', znamená, že v obou případech byla vylosována alela ''A'', nebo přesněji, že byla "matčina" alela ''A'' a současně byla "otcova" alela ''A''. Pravděpodobnost vylosování alely ''A'' je její frekvence ''p'', tedy:
*The probability that an individual with genotype ''AA'' will arise means that allele ''A'' was drawn in both cases, or more precisely, that the "mother's" allele was ''A'' and at the same time the "father's" allele was ''A''. The probability of drawing the allele ''A'' is its frequency ''p'', that is:


::<math>P(AA) = p\cdot p = p^2</math>
::<math>P(AA) = p\cdot p = p^2</math>


*Pravděpodobnost, že vznikne jedinec s genotypem ''aa'', lze odvodit zcela analogickou úvahou:
*The probability that an individual with the genotype ''aa'' will arise can be derived by a completely analogous reasoning:


::<math>P(aa) = q\cdot q = q^2</math>
::<math>P(aa) = q\cdot q = q^2</math>


*Pravděpodobnost, že vznikne jedninec s genotypem ''Aa'', lze odvodit několika způsoby. Pro kontrolu naznačíme oba:
*The probability of producing an individual with genotype ''Aa'' can be derived in several ways. For checking, we indicate both:


Ryze formální způsob vychází z předpokladu, že žádný další fenotyp již v populaci neexistuje, tedy že součet pravděpodobností vzniku jednotlivých fenotypů je roven jedné:
The purely formal method is based on the assumption that no other phenotype exists in the population, i.e. that the sum of the probabilities of the occurrence of individual phenotypes is equal to one:


::<math>P(AA) + P(aa) + P(Aa) = 1</math>
::<math>P(AA) + P(aa) + P(Aa) = 1</math>


Dosazením zjistíme, že:
Substituting, we find that:


::<math>P(Aa) = 1 - P(AA) - P(aa) = 1 - p^2 - q^2</math>
::<math>P(Aa) = 1 - P(AA) - P(aa) = 1 - p^2 - q^2</math>


Dále využijeme toho, že platí, že ''q=1-p''. Postupně dostaneme:
Next, we will use the fact that ''q=1-p''. Gradually we get:


::<math>P(Aa) = 1 - p^2 - (1-p)^2 = -2p^2 + 2p = 2p(1-p)</math>
::<math>P(Aa) = 1 - p^2 - (1-p)^2 = -2p^2 + 2p = 2p(1-p)</math>


Nyní si pro změnu uvědomíme, že ''q=1-p'' a dostaneme výsledek:
Now, for a change, we realize that ''q=1-p'' and get the result:


::<math>P(Aa) = 2pq</math>
::<math>P(Aa) = 2pq</math>


Ke stejnému výsledku lze dospět i pravděpodobnostní úvahou, pokud si zadání rozepíšeme jako: Pravděpodobnost, že jedinec dostane alelu ''A'' od "matky" a alelu "a" od otce nebo že dostane alelu ''a'' od "matky" a alelu "A" od otce. Tedy:
The same result can also be arrived at by probabilistic reasoning, if we break down the assignment as: The probability that an individual receives the ''A'' allele from the "mother" and the "a" allele from the father, or that he receives the ''a'' allele from the "mother" and the "A" allele from the father. Thus:


::<math>P(Aa) = pq + qp = 2pq</math>
::<math>P(Aa) = pq + qp = 2pq</math>


'''Rovnice popisující Hardy-Weinbergovu rovnováhu''' není pak ničím jiným než vyjádřením faktu, že jiné kombinace se v populaci nevyskytují:
'''The equation describing the Hardy-Weinberg equilibrium''' is then nothing more than an expression of the fact that other combinations do not occur in the population:


::<math>p^2 + 2pq + q^2 = 1</math>
::<math>p^2 + 2pq + q^2 = 1</math>


===Výpočty četnosti alel===
===Allele frequency calculations===
====Úplná dominance alely A====
====Complete dominance of the A allele====
V případě, že je alela ''A'' úplně dominantní nad alelou ''a'', máme k dispozici při sledování populace četnost dvou fenotypů. Četnost dominantního fenotypu je rovna součtu četností dominantních homozygotů a heterozygotů:
In the event that allele ''A'' is completely dominant over allele ''a'', we have the frequency of two phenotypes at our disposal when monitoring the population. The frequency of the dominant phenotype is equal to the sum of the frequencies of dominant homozygotes and heterozygotes:


::<math>P(\mbox{fenotyp A}) = P(AA) + P(Aa) = p^2 + 2pq</math>
::<math>P(\mbox{fenotyp A}) = P(AA) + P(Aa) = p^2 + 2pq</math>


Pro četnost recesivních homozygotů platí:
For the frequency of recessive homozygotes:


::<math>P(\mbox{fenotyp a}) = P(aa) = q^2</math>
::<math>P(\mbox{fenotyp a}) = P(aa) = q^2</math>


Tedy pro četnost alely ''a'' platí:
Thus, for the frequency of allele ''a'':


::<math>q = \sqrt{P(\mbox{fenotyp a})\;}</math>
::<math>q = \sqrt{P(\mbox{fenotyp a})\;}</math>
V konečné ale dostatečně velké populaci se pravděpodobnosti nahradí frekvencemi (relativními četnostmi) jednotlivých fenotypů. Tedy pro populaci o velikosti ''N'', kde ''N(A)'' jedinců má dominantní fenotyp a ''N(a)'' jedinců má recesivní fenotyp budou odhady frekvence alel:


V konečné ale dostatečně velké populaci se pravděpodobnosti nahradí frekvencemi (relativními četnostmi) jednotlivých fenotypů. Tedy pro populaci o velikosti ''N'', kde ''N(A)'' jedinců má dominantní fenotyp a ''N(a)'' jedinců má recesivní fenotyp budou odhady frekvence alel:
In a finite but sufficiently large population, probabilities are replaced by frequencies (relative frequencies) of individual phenotypes. Thus, for a population of size ''N'', where ''N(A)'' individuals have a dominant phenotype and ''N(a)'' individuals have a recessive phenotype, the allele frequency estimates will be:


::<math>q = \sqrt{\frac{N(a)}{N}\;}</math>
::<math>q = \sqrt{\frac{N(a)}{N}\;}</math>


a zcela dle očekávání:
and quite as expected:


::<math>p = 1 - q</math>
::<math>p = 1 - q</math>


====Neúplná dominance alely A====
====Incomplete dominance of the A allele====
Pokud je alela ''A'' neúplně dominantní, případně pokud je vůči alele ''a'' kodominantní, lze rozlišit i heterozygotní fenotyp. Frekvenci dominantní alely pak lze spočítat přímo z frekvence dominantního a smíšeného fenotypu. Základní rovnici:
If the ''A'' allele is incompletely dominant, or if it is codominant with respect to the ''a'' allele, a heterozygous phenotype can also be distinguished. The frequency of the dominant allele can then be calculated directly from the frequency of the dominant and mixed phenotype. Basic equation:


::<math>p^2 + 2pq + q^2 = 1</math>
::<math>p^2 + 2pq + q^2 = 1</math>


Lze totiž upravit dosazením ''q=1-p'' za četnost recesivních homozygotů. Po několika snadných úpravách dostaneme tvar:
It can be adjusted by substituting ''q=1-p'' for the frequency of recessive homozygotes. After a few easy adjustments, we get the shape:


::<math>2p = 2 p^2 + 2pq</math>
::<math>2p = 2 p^2 + 2pq</math>


Z tohoto tvaru lze přejít k absolutním četnostem fenotypů ''N(AA)'' a ''N(Aa)'':
From this form, we can go to the absolute frequencies of the ''N(AA)'' and ''N(Aa)'' phenotypes:


::<math>p = \frac{2N(AA) + N(Aa)}{N}</math>
::<math>p = \frac{2N(AA) + N(Aa)}{N}</math>


Dlužno ovšem poznamenat, že mnohem rychlejší cesta je i v tomto případě přes výpočet jen z četnosti homozygotního fenotypu:
It should be noted, however, that a much faster way is also in this case through the calculation only from the frequency of the homozygous phenotype:


::<math>p = \sqrt{\frac{N(AA)}{N}}</math>
::<math>p = \sqrt{\frac{N(AA)}{N}}</math>


==Rovnováha pro více alel==
==Equilibrium for multiple alleles==
Postup pro více alel je, pokud jsou splněny podmínky Hardy-Weinbergovy rovnováhy, zcela přímočarým zobecněním. Velmi snadno lze nahlédnout, že model gametické urny lze použít i v tomto případě. Gametická urna bude generovat ''n'' možných gamet ''A<sub>i</sub>'', každou s četností ''p<sub>i</sub>'' (''i=1,2,..n''). V populaci bude ''n'' homozygotů, pro které bude na základě zcela stejných úvah jako výše platit:
The multi-allele procedure is, as long as Hardy-Weinberg equilibrium conditions are met, a completely straightforward generalization. It is very easy to see that the gametic urn model can be used in this case as well. The gametic urn will generate ''n'' possible gametes ''Ai'', each with frequency ''pi (i=1,2,..n)''. There will be ''n'' homozygotes in the population for which, based on exactly the same considerations as above, the following will apply:


::<math>P(A_iA_i) = p_i^2</math>
::<math>P(A_iA_i) = p_i^2</math>


Dále bude v populaci ''n(n-1)/2'' heterozygotů. K tomuto počtu se dospěje úvahou, že libovolný jedinec může od "matky" dostat ''n'' možných alel, aby byl heterozygotní, může od "otce" dostat jen ''n-1'' alel. No a protože jsou oba chromosomy nerozlišitelné, je např. genotyp "A<sub>1</sub>A<sub>3</sub>" identický s fenotypem "A<sub>3</sub>A<sub>1</sub>". Zcela analogicky úvahám jen pro dvě alely lze odvodit, že pro četnost heterozygotů platí:
Furthermore, there will be ''n(n-1)/2'' heterozygotes in the population. This number is arrived at by considering that any individual can receive ''n'' possible alleles from the "mother" to be heterozygous, he can receive only ''n-1'' alleles from the "father". Well, since both chromosomes are indistinguishable, the genotype "A1A3" is identical to the phenotype "A3A1". Completely analogous to the considerations for only two alleles, it can be deduced that the following applies to the frequency of heterozygotes:


::<math>P(A_iA_j) = 2 p_i p_j</math>
::<math>P(A_iA_j) = 2 p_i p_j</math>


'''Hardy-Weinbergova rovnice''' pak může být zapsána v několika tvarech. Úsporný tvar, který je vhodný spíše pro řešení simulací, je následující:
'''The Hardy-Weinberg equation''' can then be written in several forms. The parsimonious form, which is more suitable for solving simulations, is the following:


::<math> \sum_{i=1}^{n}\sum_{j=1}^{n} p_i p_j= 1</math>
::<math> \sum_{i=1}^{n}\sum_{j=1}^{n} p_i p_j= 1</math>


Někdy je vhodné rovnici rozdělit na část odpovídající homozygotům a na část odpovídající heterozygotům:
Sometimes it is convenient to divide the equation into a part corresponding to homozygotes and a part corresponding to heterozygotes:


::<math> \underbrace{\sum_{i=1}^{n} p_ip_i}_{\mbox{homozygoti}}  + \underbrace{\sum_{i=1}^{n}\sum_{j=i+1}^{n} 2p_ip_j}_{\mbox{heterozygoti}} = 1</math>
::<math> \underbrace{\sum_{i=1}^{n} p_ip_i}_{\mbox{homozygoti}}  + \underbrace{\sum_{i=1}^{n}\sum_{j=i+1}^{n} 2p_ip_j}_{\mbox{heterozygoti}} = 1</math>


==Aplikace na reálné populace==
==Application to real populations==
Aby mohl být model aplikován na reálné populace, je třeba, aby byly dodrženy následující podmínky:
In order for the model to be applied to real populations, the following conditions must be met:
 
*I když byl model vybudován na předpokladu oboupohlavnosti jedinců, není tento předpoklad nezbytný. Existence oddělených pohlaví by komplikovala model gametické urny. Není ale obtížné ukázat, že pokud studovaný gen není pohlavím nositele ovlivněn, bude se v subpopulacích obou pohlaví udržovat stejná frekvence alel.
*Populace musí splňovat podmínku panmixie, tedy volné kombinovatelnosti genů. Panmixie může být narušena například geografickými poměry, omezenou migrací druhu a výrazně nerovnoměrným počátečním rozmístěním. Například populace koček na jednom ostrově bude panmiktická, populace koček na několika blízkých ostrovech již panmiktická být nemusí. Jiným způsobem narušení panmixie je to, že přítomnost jisté alely může ovlivnit výběr partnera, který má nebo naopak nemá podobnou alelu. Tak například tendence lidí vybírat si partnery s podobným IQ představuje faktor, který narušuje podmínku panmixie při studiu populační distribuce alel odpovědných za inteligenci.
*Populace musí být dostatečně velká. Čím menší bude počet jedinců v populaci, tím více se budou uplatňovat statistické fluktuace jako tzv. [[genetický drift]]. Ten může u poměrně malých poulací vést až k tomu, že některé alely z populace vymizí.
*Veškeré toky genů (selekce, emigrace, imigrace, mutace ) musí být zanedbatelné.
*Předpoklady modelu narušuje nepohlavní rozmnožování. Při něm totiž jedinec vytváří své kopie bez ohledu na to, jak četné v populaci jsou.
*Předpoklady u reálné populace narušuje i překrývání generací. Pokud je populace blízko rovnováhy, nemusí to vést k porušení rovnováhy.


==Odvozené rovnováhy==
*Although the model was built on the assumption of bisexuality of individuals, this assumption is not necessary. The existence of separate sexes would complicate the gametic urn model. However, it is not difficult to show that if the gene under study is not influenced by the gender of the carrier, the same frequency of alleles will be maintained in the subpopulations of both sexes.
Při nesplnění některé, resp. více podmínek, může docházet k ustavení jiného typu rovnováhy, resp. jejich kombinaci:
*The population must meet the condition of panmixity, i.e. the free combinability of genes. Panmixia can be disturbed by, for example, geographical conditions, limited migration of the species and significantly uneven initial distribution. For example, a cat population on one island will be panmictic, but a cat population on several nearby islands may no longer be panmictic. Another way in which panmixity is disrupted is that the presence of a certain allele can affect the choice of a mate who has or does not have a similar allele. Thus, for example, the tendency of people to choose partners with similar IQ is a factor that violates the panmixity condition when studying the population distribution of alleles responsible for intelligence.
*The population must be large enough. The smaller the number of individuals in the population, the more statistical fluctuations such as genetic drift will be applied. In relatively small populations, this can lead to the disappearance of some alleles from the population.
*All gene flows (selection, emigration, immigration, mutation) must be negligible.
*Asexual reproduction violates the assumptions of the model. With it, an individual creates copies of itself regardless of how numerous they are in the population.
*Assumptions in the real population are also disturbed by overlapping generations. If the population is close to equilibrium, this may not lead to a disequilibrium.


*[[Mutační rovnováha]]
==Derived balances==
*[[Selekční rovnováha]], např. selekce proti homozygotům, selekce proti heterozygotům
In the event of non-fulfilment of any or more conditions, a different type of equilibrium may be established, or their combination:
*Populace s výrazným vlivem [[genetický drift|genetického driftu]]. U nich je rovnováha zpravidla dosažena fixováním jedné z alel a vymizením druhé.


==Odkazy==
*Mutational balance
===Související články===
*Selection balance, eg selection against homozygotes, selection against heterozygotes
*A population with a significant influence of genetic drift. In them, the balance is usually achieved by fixing one of the alleles and the disappearance of the other.


*[[Genetický drift]]
==Links==
*[[Populační genetika]]
===Related articles===


[[Kategorie:Genetika]]
*[[Genetický drift|Genetic drift]]
*[[Populační genetika|Population genetics]]

Latest revision as of 10:30, 15 February 2023

Hardy–Weinberg equilibrium (also Hardy–Weinberg law) is a theoretical equilibrium distribution of alleles in a population derived by Godfrey Harold Hardy, a British mathematician and friend of geneticist Reginald Punett, and independently by German physician Wilhelm Weinberg in 1908.

Equilibrium for two alleles[edit | edit source]

It describes the frequency of genotypes in an idealized population. The model was formulated under several assumptions:

  • The population is large enough that the simplifying assumption of an infinitely large population can be assumed when building the model. In practice, it is sufficient for the population to be so large that gene drift can be neglected.
  • There is no selection in the population.
  • Mutations do not occur in the population.
  • There is neither emigration nor immigration.
  • The area occupied by a population is such that any individual can interbreed with any other individual.
  • Individuals are representatives of both sexes.
Hardy–Weinberg principle for two alleles

Let us now assume that there are only two alleles of the observed gene in the population, labeled A (dominant) and a (recessive). The frequency (relative frequency) of allele A is denoted by p, the frequency of allele a is denoted by q. Since we assume that there are only these two alleles in the population, it must hold:

If a new offspring is to arise from the crossing of parents, it will take over one of its alleles from each randomly selected parent. The probability that a randomly selected parent will produce a gamete with a given allele corresponds to its population frequency. In this way, one can even ignore the existence of parents and move to the gametic urn model. For the final population, a gametic urn would be created for the two monitored gametes in such a way that each individual would contribute its alleles, i.e. a homozygote would insert two alleles A or a, heterozygote for one of the alleles A and a. A new individual is then created by drawing two alleles from this urn. The assumption of an infinitely large population ensures that removing one allele from a gametic urn does not change the frequency of alleles in the urn. It will still be true that allele A is drawn from the gametic urn with probability p and allele a with probability q.

Now suppose that a new individual is created by drawing from the gametic urn. The question is the frequency with which individual combinations of alleles will arise. The answer is easy, because from the assumption of the infinity of the basic population, the generation of two alleles (or alleles "from the mother" and "from the father") is an independent random phenomenon. Thus:

  • The probability that an individual with genotype AA will arise means that allele A was drawn in both cases, or more precisely, that the "mother's" allele was A and at the same time the "father's" allele was A. The probability of drawing the allele A is its frequency p, that is:
  • The probability that an individual with the genotype aa will arise can be derived by a completely analogous reasoning:
  • The probability of producing an individual with genotype Aa can be derived in several ways. For checking, we indicate both:

The purely formal method is based on the assumption that no other phenotype exists in the population, i.e. that the sum of the probabilities of the occurrence of individual phenotypes is equal to one:

Substituting, we find that:

Next, we will use the fact that q=1-p. Gradually we get:

Now, for a change, we realize that q=1-p and get the result:

The same result can also be arrived at by probabilistic reasoning, if we break down the assignment as: The probability that an individual receives the A allele from the "mother" and the "a" allele from the father, or that he receives the a allele from the "mother" and the "A" allele from the father. Thus:

The equation describing the Hardy-Weinberg equilibrium is then nothing more than an expression of the fact that other combinations do not occur in the population:

Allele frequency calculations[edit | edit source]

Complete dominance of the A allele[edit | edit source]

In the event that allele A is completely dominant over allele a, we have the frequency of two phenotypes at our disposal when monitoring the population. The frequency of the dominant phenotype is equal to the sum of the frequencies of dominant homozygotes and heterozygotes:

For the frequency of recessive homozygotes:

Thus, for the frequency of allele a:

V konečné ale dostatečně velké populaci se pravděpodobnosti nahradí frekvencemi (relativními četnostmi) jednotlivých fenotypů. Tedy pro populaci o velikosti N, kde N(A) jedinců má dominantní fenotyp a N(a) jedinců má recesivní fenotyp budou odhady frekvence alel:

In a finite but sufficiently large population, probabilities are replaced by frequencies (relative frequencies) of individual phenotypes. Thus, for a population of size N, where N(A) individuals have a dominant phenotype and N(a) individuals have a recessive phenotype, the allele frequency estimates will be:

and quite as expected:

Incomplete dominance of the A allele[edit | edit source]

If the A allele is incompletely dominant, or if it is codominant with respect to the a allele, a heterozygous phenotype can also be distinguished. The frequency of the dominant allele can then be calculated directly from the frequency of the dominant and mixed phenotype. Basic equation:

It can be adjusted by substituting q=1-p for the frequency of recessive homozygotes. After a few easy adjustments, we get the shape:

From this form, we can go to the absolute frequencies of the N(AA) and N(Aa) phenotypes:

It should be noted, however, that a much faster way is also in this case through the calculation only from the frequency of the homozygous phenotype:

Equilibrium for multiple alleles[edit | edit source]

The multi-allele procedure is, as long as Hardy-Weinberg equilibrium conditions are met, a completely straightforward generalization. It is very easy to see that the gametic urn model can be used in this case as well. The gametic urn will generate n possible gametes Ai, each with frequency pi (i=1,2,..n). There will be n homozygotes in the population for which, based on exactly the same considerations as above, the following will apply:

Furthermore, there will be n(n-1)/2 heterozygotes in the population. This number is arrived at by considering that any individual can receive n possible alleles from the "mother" to be heterozygous, he can receive only n-1 alleles from the "father". Well, since both chromosomes are indistinguishable, the genotype "A1A3" is identical to the phenotype "A3A1". Completely analogous to the considerations for only two alleles, it can be deduced that the following applies to the frequency of heterozygotes:

The Hardy-Weinberg equation can then be written in several forms. The parsimonious form, which is more suitable for solving simulations, is the following:

Sometimes it is convenient to divide the equation into a part corresponding to homozygotes and a part corresponding to heterozygotes:

Application to real populations[edit | edit source]

In order for the model to be applied to real populations, the following conditions must be met:

  • Although the model was built on the assumption of bisexuality of individuals, this assumption is not necessary. The existence of separate sexes would complicate the gametic urn model. However, it is not difficult to show that if the gene under study is not influenced by the gender of the carrier, the same frequency of alleles will be maintained in the subpopulations of both sexes.
  • The population must meet the condition of panmixity, i.e. the free combinability of genes. Panmixia can be disturbed by, for example, geographical conditions, limited migration of the species and significantly uneven initial distribution. For example, a cat population on one island will be panmictic, but a cat population on several nearby islands may no longer be panmictic. Another way in which panmixity is disrupted is that the presence of a certain allele can affect the choice of a mate who has or does not have a similar allele. Thus, for example, the tendency of people to choose partners with similar IQ is a factor that violates the panmixity condition when studying the population distribution of alleles responsible for intelligence.
  • The population must be large enough. The smaller the number of individuals in the population, the more statistical fluctuations such as genetic drift will be applied. In relatively small populations, this can lead to the disappearance of some alleles from the population.
  • All gene flows (selection, emigration, immigration, mutation) must be negligible.
  • Asexual reproduction violates the assumptions of the model. With it, an individual creates copies of itself regardless of how numerous they are in the population.
  • Assumptions in the real population are also disturbed by overlapping generations. If the population is close to equilibrium, this may not lead to a disequilibrium.

Derived balances[edit | edit source]

In the event of non-fulfilment of any or more conditions, a different type of equilibrium may be established, or their combination:

  • Mutational balance
  • Selection balance, eg selection against homozygotes, selection against heterozygotes
  • A population with a significant influence of genetic drift. In them, the balance is usually achieved by fixing one of the alleles and the disappearance of the other.

Links[edit | edit source]

Related articles[edit | edit source]