Pancreatic Hormones
Feedback

From WikiLectures

Revision as of 17:19, 4 March 2012 by Satrax (talk | contribs)

Under construction / Forgotten

This article was marked by its author as Under construction, but the last edit is older than 30 days. If you want to edit this page, please try to contact its author first (you fill find him in the history). Watch the discussion as well. If the author will not continue in work, remove the template {{Under construction}} and edit the page.

Last update: Sunday, 04 Mar 2012 at 5.19 pm.


Pancreatic Hormones

Pancreas is both exocrine and endocrine gland. The exocrinal part sectretes pancreatic fluid into duodenum after meal. The endocrinal part secretes various types of hormones. These are produced by a specialized tissue in the pancreas and then released to the capillary system and reached the liver by the portal venous circulation. Islets of Langerhans. Islets of Langehans represent approximately 1-2 % of the pancreas. Three types of cells are regonized in these islets.

  • A cells – producing glucagon (25% of all islet cells)
  • B cells – producing insulin (60% of all islet cells)
  • D cells – producing somatostatin (10% of all islet cells)
  • F cells – producing panceratic polypeptide (5% of all islet cells)

Islets of Langerhans play a crucial role in a carbohydrate metabolism and so a plasma glucose concentration. It involves :

  • Glycolysis – the anaerobic conversion of glucose to lactate. Occurs in the red blood cells, renal medulla and sceletal muscles.
  • Glycogenesis – the synthesis of glycogen from glucose. Glucose is stored ( in liver, muscle) by this process as glycogen and this serves to maintain a constant plasma glucose concentration.
  • Glycogenolysis – the breakdown of glycogen to glucose.
  • Gluconeogenesis – the production of glucose from non-sugar molecules (amino acids, lactate, glycerol)
  • Lipolysis – the breakdown of triacylglycerols into glycerol and free fatty acids.
  • Lipogenesis – the synthesis of triacylglycerols.

Fuction

  • Pancreatic hormons are responsible for a storage of fat and glucose, as glycogen, after meal.
  • Enables the mobilisation of energy reserves as a result of food deprivation, stres, physical activity.
  • Maintain the constant plasma glucose concentration.
  • Promote growth.

Insulin

Structure

Insulin is a peptide consisting of an α chain (21 amino acids) which is by two disulfide bridges linked to a β chain (30 amino acids) Insulins precursor is a preproinsulin which contains a signal sequence which is removed in a endoplasmic reticulum. By this process the preproinsulin is converted to a proinsulin. Insulin is then made from its prohormon (proinsulin) after removal of a C-peptid. The center portion of a molecule which bounds the two chains together. Insulins chains are now held by disulfide bound. Insulin receptor consists of two extracellular α subunits and two transmembranous β subunits. A subunits bound the insulin and this lead to an autophosphorylation of β subunites. β subunits then act as receptor tyrosine kinases that phosphorylate insuline receptor subunits. Signal is then pass by intracellular proteins.

Regulation

Insuline is mainly secreted in response to increases in the blood levels of glucose. Higher level of glucose cause that glucose enter the B cells and is converted to a glucose-6-phosphate. This creates the cytosolic ATP and leads to a closure of ATP-gated channels and then to depolarization. Depolarizations causes a opening of voltage-gated channels and the level of cytosolic rises and initiates a exocytosis of insulin and re-openning of channels. Insulin secretion is stimulated during digestion via acetylcholin (vagus nerve), gastrin, sekretin. Certain amino acids as a arginin and leucin also stimulate secretion as well as free fatty acids and some steriod hormones. The secretion is inhibited vie epinephrine and norepinephrine. These are activated when hypoglycemia is detected by central chemoreceptors.

Function

Insulin has anabolic and lipogenic effects. Promotes the storage of glucose in the liver and also activates enzymes to promote glycolysis and glycogenesis. Also promotes the storage of amino acids in the form of proteins and promotes growth. Insulin also increases the amount of GLUT-4. (glucose transporters in skeletal myocytes. So that glucose can enter. Glucose can enter the cell in two different ways. One is with sodium as a secundar active transport and the other one is through glucose transportes, fascilitated diffusion.)

Glucagon

Glucagon is a peptide derived from proglucagon (glicentin). Glucagon secretion is stimulated by amino acids, arginin and alanin, from digested proteins. And also by hypoglycemia, as a result of physical exercise. And sympathic impulses. The secretion is inhibited by glucose, somatostatin and high plasma concetrations of free fatty acids.

Function

Glucagon mainly antagonise insulin. The signal from glucagon receptor is sprej via cAMP. Glucagon increases glycogenolysis in the liver, stimulans gluconeogenesis from lactate, protein degradation and lipolysis. Its main role is to maintain the normal blood glucose level between meals to ensure a constant energy supply.

Somatostatin

Somatostatin is released in response to higher plasma concentrations of glucose and arginin. Through paracrinne pathways inhibits the release of insulin and also the secretion of glucagone. During the deficiency of glucose, this process doesn´t occur due to the release of catecholamines that inhibite the secretion of somatostatin.

Diabetes mellitus

There are two types recognized. One type of diabetes mellitus is insuline-dependent, type 1, which is caused by an insulin deficiency. Another type is non-insulin-dependent, type 2, which is caused by a shortage of insulin receptors. In both cases the level of glucose in blood is increased and this leads to glycosuria, polyuria and polydipsia. Since lipolysis is no longer inhibited, fatty acids are liberated in a large quantities. Fatty acids can be used as a source of energy, although, this leads to formation of acetoacetic acids and acetone (ketosis). As a result of so many fatty acids the liver begins to store triacylglycerols which leads to the development of fatty liver.