Interaction of Ionizing Radiation
_TOC__ Při průchodu ionizujícího záření hmotou dochází k interakci mezi částicemi nebo fotony záření a strukturami okolních atomů, tedy jádrem a elektronovým obalem. Samotný průběh interakce závisí na charakteru záření, jeho kinetické energii a složení látky ve které interakce probíhá.
Interakce je hodnocena ze dvou pohledů:
- z pohledu záření – změny energie, počtu částic a směru procházejícího záření;
- z pohledu prostředí – přesuny subatomárních částic a na ně navazující reakce.
Podle interakce rozdělujeme ionizující záření na:
- přímo ionizující – elektricky nabité částice – záření α, β- a β+, protony, jaderné fragmenty;
- nepřímo ionizující – elektroneutrální záření – RTG, záření γ, neutronové záření.
Podle místa interakce dělíme na:
- interagující s jádrem;
- interagující s atomovým obalem.
Celkově lze tedy ionizující záření rozdělit do tří skupin:
- elektromagnetické (fotonové) záření – RTG a γ záření;
- nabité částice – p, α, β;
- nenabité částice – neutrony.
Interakce elektromagnetického záření
thumb|right|Pravděpodobnost jednotlivých typů interakce fotonového záření. K interakci dochází v jádru a jeho elektromagnetickém poli nebo v obalu atomu. Interakce obou druhů záření (RTG a γ) jsou si velmi podobné, liší se místem vzniku (RTG z obalu, γ z jádra) a frekvencí.
Celkově rozlišujeme šest typů interakcí fotonového záření s hmotou (viz tabulka). Podrobněji budou rozebrány jen tři nejvýznamnější: fotoelektrický jev, Comptonův rozptyl a tvorba elektron-pozitronových párů.
absorbce | pružná srážka | nepružná srážka | |
---|---|---|---|
elektronový obal | fotoelektrický jev | Rayleighův rozptyl | Comptonův rozptyl |
atomové jádro | fotojaderná interakce | jaderný rezonanční rozptyl | |
EMG pole | tvorba elektron-pozitronových párů |
Fotoelektrický jev
Comptonův rozptyl
Elektron-pozitronové páry
Interakce nabitých částic
Těžší částice, nesoucí náboj, interagují s hmotou nepružnými nárazy. Tím předávají okolí svou kinetickou energii. Tento děj nazýváme srážkové ztráty energie. Náboj se nemění.
Interakce může proběhnout také formou tzv. radiační ztráty, kdy spolu interagují pouze elektromagnetická pole částic. K tomu dochází často u lehkých částic, elektronů.
Částice záření nemusí předat celou svou energii najednou. Energie se v cílové struktuře projeví jako excitace buď jádra nebo elektronů v obalu. Vždy dochází ke ztrátám energie v podobě tepla. Pokud je předaná energie dostatečně velká, může dojít k odtržení elektronu, který se pak chová jako β- částice, jeho kinetická energie je rovna energii předané nárazem. Toto takzvané sekundární elektronové záření je někdy označováno jako záření δ.
Těžší částice nesoucí větší náboj interagují častěji, svou energii předají okolí na krátké vzdálenosti a pak zanikají.
Iron
Interakce nenabitých částic
right Neutrony, jako nejvýznamnější zástupci skupiny nenabitých částic, interagují s okolní hmotou jen na základě silných a slabých jaderných sil.
Interakce může probíhat formou pružného a nepružného rozptylu, emisí nabité částice, radiačního (neutronového) záchytu, nebo dojde k rozštěpení jádra.
Pružný rozptyl
Nejpravděpodobnějším typem interakce je pružný rozptyl. Dochází k němu na velmi malých jádrech, která se svou velikostí blíží neutronu, jako například vodík. Energie, předaná neutronem, se celá přemění na kinetickou energii zasažené částice. Atom se neexcituje. Odražený neutron pokračuje dále se zbytkem energie. Tomuto ději se říká moderace neutronové rychlosti. Děj pokračuje dokud se neutron nezpomalí natolik, že může být absorbován jádrem. Moderace se využívá v 235uranových jaderných reaktorech, kdy atomy vodíku v molekule vody zpomalují rychlé neutrony, vzniklé štěpením.
Iron
Nepružný rozptyl
K nepružnému rozptylu dochází na jádrech těžkých prvků. Neutron, obdobně jako při pružném rozptylu, předá část své kinetické energie a jako zpomalený pokračuje dál. Zasažené jádro se ale excituje, část předané energie je vyzářena v podobě γ fotonu, zbytek se změní v kinetickou energii jádra.
Emise nabité částice
Neutron má tolik energie, že při zásahu jádra vyrazí jeden nebo i několik jaderných elementů. Kinetická energie neutronu je tedy spotřebována na vyražení protonu, α částice nebo deuteronu (jádro deuteria, jeden proton a jeden neutron), zbytek předané energie se změní v kinetickou energii vyražené částice. Tím může dojít ke vzniku nestabilního nuklidu a jeho dalšímu rozpadu.
Radiační záchyt
Neutron je zachycen jádrem, jeho kinetická energie je vyzářena v podobě γ fotonu.
Jaderné štěpení
Při vhodné rychlosti neutronu, v poměru k cílovému atomovému jádru, může dojít k rozštěpení jádra za vzniku štěpných produktů, kterými jsou většinou radioaktivní izotopy. Při štěpení se z jádra uvolní tolik energie, že vzniklé neutrony mají i vyšší energii, než ten, který způsobil štěpení. Obvykle je emitováni foton γ záření. Pokud se uvolní víc než jeden neutron schopný štěpení, dochází k tzv. lavinovému efektu s exponenciálním nárůstem interakcí. Této řetězové štěpné reakce se využívá u jaderných zbraní. V moderované podobě (= ne všechny vzniklé neutrony štěpí další jádra) je základem jaderného reaktoru.
Odkazy
Související články
Použitá literatura
Kategorie:Biofyzika Kategorie:Nukleární medicína Kategorie:Radiodiagnostika