Interaction of Ionizing Radiation
During the passage of ionizing radiation through matter, there is an interaction between the particles or photons of the radiation and the structures of the surrounding atoms , i.e. the nucleus and the electron shell. The course of the interaction itself depends on the nature of the radiation , its kinetic energy and the composition of the substance in which the interaction takes place.
The interaction is evaluated from two perspectives:
- from the point of view of radiation – changes in energy, number of particles and direction of passing radiation;
- from the point of view of the environment – movements of subatomic particles and subsequent reactions.
According to the interaction , we divide ionizing radiation into:
- directly ionizing – electrically charged particles – radiation α ,β - and β + , protons, nuclear fragments;
- indirectly ionizing - electroneutral radiation - X- ray , γ radiation , neutron radiation.
According to the place of interaction , we divide into:
- interacting with the core ;
- interacting with the atomic shell .
Overall, ionizing radiation can therefore be divided into three groups:
- electromagnetic (photon) radiation – X- rays and γ radiation;
- charged particles – p, α, β;
- uncharged particles - neutrons.
Interaction of electromagnetic radiation
The interaction occurs in the nucleus and its electromagnetic field or in the shell of the atom. The interactions of both types of radiation (X-ray and γ) are very similar, they differ in the place of origin (X-ray from the envelope, γ from the core) and frequency.
In total, we distinguish six types of interactions of photon radiation with matter (see table). Only the three most important ones will be discussed in more detail: the photoelectric effect, Compton scattering and the formation of electron-positron pairs.
absorption | flexible collision | inelastic collision | |
---|---|---|---|
electronic envelope | photoelectric phenomenon | Rayleigh scattering | Compton scattering |
atomic nucleus | photonuclear interaction | nuclear resonance scattering | |
EMG Field | formation of electron-positron pairs |
Photoelectric Phenomenon
Úvod
náhled|Fotoelektrický jev Fotoelektrický jev (fotoefekt) je jednou ze tří možných interakcí γ záření s elektronovým obalem atomu. Z těchto tří interakcí má foton zpravidla nejslabší energii. Je to fyzikální jev, při němž jsou elektrony uvolňovány (vyzařovány, emitovány) z látky (nejčastěji z kovu) v důsledku absorpce elektromagnetického záření látkou. Elektrony emitované z jaderného obalu jsou pak označovány jako fotoelektrony. Jejich uvolňování se označuje jako fotoelektrická emise (fotoemise).
Historie
Za objevitele fotoelektrického jevu je považován Heinrich Hertz, který si při svých pokusech (roku 1887), jejichž cílem bylo experimentální prokázání existence Maxwellem předpovězených elektromagnetických vln, všiml, že ozáření jiskřiště ultrafialovým zářením usnadňuje přeskok jiskry – tj. přenos elektrického náboje mezi elektrodami.
Roku 1899 Joseph John Thomson udělal rozhodující krok k objasnění podstaty jevu. Thomson experimentálně identifikoval v nositelích záporného náboje unikajících z ozařovaného kovového vzorku elektrony.
Vlastní podstatu fotoelektrického jevu popsal v roce 1905 Albert Einstein (Nobelovu cenu za tento objev získal v roce 1921).
Popis jevu
náhled|Dopad na povrch látky Fotoelektrický jev nastává, když se celá energie kvanta záření γ předává některému elektronu z elektronového obalu absorbujícího materiálu nebo případně volnému elektronu (např. v kovech). Část energie se spotřebuje na uvolnění elektronu (vykonáním tzv. výstupní práce Wv) a část se přemění na kinetickou energii Ek vzniklého fotoelektronu. Foton záření γ tímto zaniká a jeho energii přebírá fotoelektron, který ionizuje své okolí.
Einsteinova rovnice pro fotoefekt vyjadřuje zákon zachování energie.
(h je Planckova konstanta)
Atom, kterému byl vyražen elektron je v excitovaném stavu a přechází do základního stavu emisí elektromagnetického záření o frekvenci odpovídající rozdílu energie excitovaného a základního stavu.
(Volné místo po elektronu je zaplněné jiným elektronem, který sem přeskočil z jiné slupky atomového obalu. Při tomto přeskoku se vyzáří energie ve formě charakteristického záření. Místo charakteristického záření může dojít k alternativnímu jevu - energie se předá některému elektronu na vyšší slupce, který se pak uvolní a vyzáří jako tzv. Augerův elektron.)
Foton interaguje s elektronem na slupkách K, L a M. Tedy s elektrony, které leží blízko jádru atomu. Nejčastěji probíhá na slupce K (80% pravděpodobnost).
Fofoefekt je pravděpodobnější v materiálech s vyšším protonovým číslem absorpčního materiálu (kost, kontrastní látky).
Podle představ klasické fyziky by elektronům měla být předána kinetická energie dopadajícího elektromagnetického vlnění. Energie elektromagnetických vln souvisí s intenzitou záření, tzn. energie vyzařovaných elektronů by měla záviset na intenzitě dopadajícího záření. Experimenty však ukázaly, že kinetická energie vyzařovaných elektronů je závislá na frekvenci a nikoliv na intenzitě dopadajícího záření.
Pro každý kov existuje určitá mezní frekvence f0 taková, že elektrony se uvolňují pouze při frekvenci f0 a frekvencích vyšších. Na frekvenci použitého elektromagnetického záření závisí také energie emitovaných elektronů. Pokud je frekvence f dopadajícího záření vyšší než mezní frekvence f0, mají fotoelektrony energii v rozmezí od nuly do určité maximální hodnoty Emax.
Závislost pozorovaného jevu na frekvenci záření nebylo možné vysvětlit klasicky.
Druhy fotoefektu
Podle způsobu vzniku elektronů vlivem dopadajícího elektromagnetického záření můžeme rozlišit:
- 1. vnější fotoelektrický jev − jev probíhá na povrchu látky, elektrony se uvolňují do okolí
- 2. vnitřní fotoelektrický jev − uvolněné elektrony zůstávají v ní jako vodivostní elektrony (např. polovodiče, v nichž jsou tímto způsobem uvolňovány elektrony zejména z přechodu PN)
Inverzní fotoelektrický jev
Inverzní (obrácený) fotoelektrický jev je jev, kdy na látku dopadají elektrony, které způsobují vyzařování fotonů.
Vysvětlení jevu
náhled|Závislost kinetické energie elektronu na frekvenci dopadajícího světla V roce 1905 Albert Einstein vyšel z Planckovy kvantové hypotézy a z představy, že elektromagnetická vlna o frekvenci f a vlnové délce λ se chová jako soubor částic (světelných kvant), z nichž každá má svou energii a hybnost. Tyto částice mají zvláštní vlastnosti, především se stále pohybují rychlostí světla a nelze je žádným způsobem zastavit, zpomalit ani urychlit. Podle teorie relativity musí mít nulovou klidovou hmotnost. Tyto částice byly v roce 1926 nazvány fotony. Velikost kvanta energie závisí na frekvenci (vlnové délce) elektromagnetického záření, přičemž platí:
Světlo při dopadu na povrch látky předává energii povrchovým elektronům zkoumané látky. K uvolnění elektronu z vazby v atomu je potřeba tzv. ionizační energie. Tato nutná energie k uvolnění elektronu může vzniknout, jestliže je vlnová délka světla dostatečně malá. V tom případě může frekvence a energie dosáhnout dostatečně vysoké hodnoty. Předáním takové energie elektronům je možné překonat tzv. fotoelektrickou bariéru k uskutečnění výstupní práce. Minimální frekvence, při níž dopadající fotony předávají elektronům výstupní energii se označuje jako prahová frekvence. Jestliže je energie předaná elektronu větší než energie potřebná k jeho uvolnění, pak fotoelektronu zůstane část energie jako kinetická energie.
Rovnice fotoelektrického jevu: (hf je energie dopadajícího fotonu, hf0 je výstupní práce − minimální energie potřebná k uvolnění elektronu, Emax je maximální možná energie uvolněného elektronu) Z této rovnice vyplývá, že energie uvolněného elektronu závisí pouze na frekvenci dopadajícího záření, a nikoliv na intenzitě tohoto záření.
Využití
Fotoelektrický jev hraje významnou úlohu na poli biofyziky. Příkladem je uplatnění těchto jevů při radiačních vyšetřeních pacienta. Rentgenové snímky vznikají na principu obráceného fotoelektrického jevu, kdy se povrch ostřeluje elektrony a uvolňují se paprsky X. Různé tkáně mají jinou absorbci, proto můžeme na snímcích rozeznat struktury. Elektron zcela pohltí foton a Rtg foton zaniká. Absorbce fotoelektrického jevu je na rozdíl od Comptonova rozptylu, který probíhá také, žádoucí. Při Comptonově jevu zůstávají volné elektrony a foton nezaniká, dochází tedy ke srážkám těles a mění se jejich směr a vlnová délka.
Odkazy
Související články
Použitá literatura
Zdroje
Kategorie:Vložené články
Kategorie:Biofyzika
Kategorie:Zkouškové otázky z biofyziky
Comptonův rozptyl
Elektron-pozitronové páry
Interakce nabitých částic
Těžší částice, nesoucí náboj, interagují s hmotou nepružnými nárazy. Tím předávají okolí svou kinetickou energii. Tento děj nazýváme srážkové ztráty energie. Náboj se nemění.
Interakce může proběhnout také formou tzv. radiační ztráty, kdy spolu interagují pouze elektromagnetická pole částic. K tomu dochází často u lehkých částic, elektronů.
Částice záření nemusí předat celou svou energii najednou. Energie se v cílové struktuře projeví jako excitace buď jádra nebo elektronů v obalu. Vždy dochází ke ztrátám energie v podobě tepla. Pokud je předaná energie dostatečně velká, může dojít k odtržení elektronu, který se pak chová jako β- částice, jeho kinetická energie je rovna energii předané nárazem. Toto takzvané sekundární elektronové záření je někdy označováno jako záření δ.
Těžší částice nesoucí větší náboj interagují častěji, svou energii předají okolí na krátké vzdálenosti a pak zanikají.
Iron
Interakce nenabitých částic
right Neutrony, jako nejvýznamnější zástupci skupiny nenabitých částic, interagují s okolní hmotou jen na základě silných a slabých jaderných sil.
Interakce může probíhat formou pružného a nepružného rozptylu, emisí nabité částice, radiačního (neutronového) záchytu, nebo dojde k rozštěpení jádra.
Pružný rozptyl
Nejpravděpodobnějším typem interakce je pružný rozptyl. Dochází k němu na velmi malých jádrech, která se svou velikostí blíží neutronu, jako například vodík. Energie, předaná neutronem, se celá přemění na kinetickou energii zasažené částice. Atom se neexcituje. Odražený neutron pokračuje dále se zbytkem energie. Tomuto ději se říká moderace neutronové rychlosti. Děj pokračuje dokud se neutron nezpomalí natolik, že může být absorbován jádrem. Moderace se využívá v 235uranových jaderných reaktorech, kdy atomy vodíku v molekule vody zpomalují rychlé neutrony, vzniklé štěpením.
Iron
Nepružný rozptyl
K nepružnému rozptylu dochází na jádrech těžkých prvků. Neutron, obdobně jako při pružném rozptylu, předá část své kinetické energie a jako zpomalený pokračuje dál. Zasažené jádro se ale excituje, část předané energie je vyzářena v podobě γ fotonu, zbytek se změní v kinetickou energii jádra.
Emise nabité částice
Neutron má tolik energie, že při zásahu jádra vyrazí jeden nebo i několik jaderných elementů. Kinetická energie neutronu je tedy spotřebována na vyražení protonu, α částice nebo deuteronu (jádro deuteria, jeden proton a jeden neutron), zbytek předané energie se změní v kinetickou energii vyražené částice. Tím může dojít ke vzniku nestabilního nuklidu a jeho dalšímu rozpadu.
Radiační záchyt
Neutron je zachycen jádrem, jeho kinetická energie je vyzářena v podobě γ fotonu.
Jaderné štěpení
Při vhodné rychlosti neutronu, v poměru k cílovému atomovému jádru, může dojít k rozštěpení jádra za vzniku štěpných produktů, kterými jsou většinou radioaktivní izotopy. Při štěpení se z jádra uvolní tolik energie, že vzniklé neutrony mají i vyšší energii, než ten, který způsobil štěpení. Obvykle je emitováni foton γ záření. Pokud se uvolní víc než jeden neutron schopný štěpení, dochází k tzv. lavinovému efektu s exponenciálním nárůstem interakcí. Této řetězové štěpné reakce se využívá u jaderných zbraní. V moderované podobě (= ne všechny vzniklé neutrony štěpí další jádra) je základem jaderného reaktoru.
Odkazy
Související články
Použitá literatura
Kategorie:Biofyzika Kategorie:Nukleární medicína Kategorie:Radiodiagnostika