Ions in drinking water: Difference between revisions
Feedback

From WikiLectures

(tran)
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Složení pitné vody ==
== Composition of drinking water ==
Voda vyskytující se v přírodě obsahuje směs rozpuštěných solí a sloučenin. '''Pitnou vodou''' se rozumí taková voda, jejíž fyzikálně-chemické vlastnosti nepředstavují ohrožení zdraví. Ukazatelé zdravotní nezávadnosti a čistoty [[Pitná voda|pitné vody]] jsou podrobně specifikovány ve vyhlášce Ministerstva zdravotnictví ČR 252/2004 Sb. Hodnota ukazatele jakosti pitné vody, jejíž překročení obvykle nepředstavuje ''akutní'' zdravotní riziko, se označuje jako '''mezní hodnota'''. '''Nejvyšší mezní hodnotou''' se rozumí hodnota zdravotně závažného ukazatele jakosti pitné vody, v důsledku jejíhož překročení je vyloučeno použití vody jako pitné.
Water found in nature contains a mixture of dissolved salts and compounds. '''[[Drinking Water|Drinking water]]''' is water whose physical-chemical properties do not pose a threat to health. Indicators of health safety and purity of '''drinking water''' are specified in detail in <u>Decree of the Ministry of Health of the Czech Republic No. 252/2004 Coll</u>. The value of the drinking water quality indicator, the exceeding of which usually does not represent an acute health risk, is referred to as the '''limit value'''. The '''highest limit value''' means the value of a health-significant indicator of the quality of drinking water, as a result of which it is exceeded, the use of the water as drinking water is excluded.


'''Minerální vody''' obsahují v 1 litru více než 1 g rozpuštěných solí. Vysoký obsah [[Kalcium|Ca]]<sup>2+</sup> nebo [[Hořčík|Mg]]<sup>2+</sup> mají vody ''zemité'' (např. „Rudolfův pramen“, „Hanácká kyselka“, které obsahují hydrogenkarbonát vápenatý, „Magnesia“ obsahující hydrogenkarbonát hořečnatý) nebo např. ''hořké'' („Šaratice“ s obsahem síranu hořečnatého).  
'''Mineral waters''' contain more than 1 g of dissolved salts in 1 liter. Waters with a high Ca<sup>2+</sup> or Mg<sup>2+</sup> content are earthy (e.g. "Rudolfův pramen", "Hanácká kyselka", which contain ''[https://pubchem.ncbi.nlm.nih.gov/compound/10112 calcium bicarbonate]'', "Magnesia" containing ''[https://pubchem.ncbi.nlm.nih.gov/compound/102204 magnesium bicarbonate]'') or e.g. bitter ("Šaratice" containing ''[https://pubchem.ncbi.nlm.nih.gov/compound/24083 magnesium sulfate]'').  


Řada iontů přítomných ve vodě je pro lidský organismus velmi důležitá, některé jsou však nežádoucí, při vyšších koncentracích toxické. Z iontů se sledují v pitné vodě např. ionty Ca<sup>2+</sup> (samotné nebo spolu s ionty Mg<sup>2+</sup>), [[Železo|Fe]]<sup>3+</sup>, NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>−</sup> a NO<sub>3</sub><sup>−</sup>.
A number of ions present in water are very important for the human organism, but some are '''undesirable and toxic at higher concentrations'''. Of the ions, e.g. Ca<sup>2+</sup> ions (alone or together with Mg<sup>2+</sup> ions), Fe<sup>3+</sup>, NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>−</sup> and NO<sub>3</sub><sup>−</sup> ions are monitored in drinking water.


== Vápenaté a hořečnaté ionty (tvrdost vody) ==
== Calcium and magnesium ions (hardness of water) ==
Koncentrace vápenatých a hořečnatých solí je jedním z ukazatelů kvality vody a bývá označována jako tzv. '''tvrdost vody'''. Kationty Ca<sup>2+</sup> a Mg<sup>2+</sup> jsou velmi důležité pro lidský organismus, jejich přítomnost je tedy žádoucí. Vysoké množství Ca<sup>2+</sup> a Mg<sup>2+</sup> kationtů zhoršuje část užitných vlastností vody – usazování nerozpustných zbytků (tzv. kotelní kámen) na stěnách nádob, snižování účinnosti mýdel apod.  
The concentration of calcium and magnesium salts is one of the indicators of water quality and is referred to as the so-called '''[https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/water-hardness water hardness]'''. '''Ca<sup>2+</sup> and Mg<sup>2+</sup> cations''' are very important for the human organism, so their presence is desirable. A high amount of Ca<sup>2+</sup> and Mg<sup>2+</sup> cations worsens some of the useful properties of water - settling of insoluble residues (so-called scale) on the walls of containers, reducing the effectiveness of soaps, etc.  


Ze zdravotního hlediska doporučené koncentrace v pitné vodě:  
From a health point of view, recommended concentrations in drinking water:  
:'''Ca<sup>2+</sup>''' 40–80 mg/l
:'''Ca<sup>2+</sup>''' 40–80 mg/l
:'''Mg<sup>2+</sup>''' 20–30 mg/l
:'''Mg<sup>2+</sup>''' 20–30 mg/l
    
    
Podle množství Ca<sup>2+</sup> a Mg<sup>2+</sup> solí je rozlišována:
According to the amount of Ca<sup>2+</sup> and Mg<sup>2+</sup> salts, we distinguish:


* '''Přechodná tvrdost vody'''
* '''Transient water hardness'''
:je tvořená vápenatými a hořečnatými uhličitany a hydrogenuhličitany. Za dané teploty a tlaku existuje v roztoku rovnováha mezi rozpuštěným oxidem uhličitým a hydrogenuhličitany. Zahříváním roztoku uniká z něho oxid uhličitý, čímž se porušuje rovnováha, což vede k postupné přeměně hydrogenuhličitanu na uhličitan. Málo rozpustný uhličitan vápenatý se vysráží na stěnách nádoby nebo na povrchu topných těles ve formě tzv. vodního kamene.  
:it is made up of '''calcium and magnesium carbonates and bicarbonates'''. At a given temperature and pressure, there is an [[equilibrium]] between dissolved [[carbon dioxide]] (CO<sub>2</sub>) and [[Bicarbonate|bicarbonates]] (HCO<sub>3</sub><sup>–</sup>) in the solution. By heating the solution, carbon dioxide (CO<sub>2</sub>) escapes from it, breaking the equilibrium, which leads to the gradual conversion of bicarbonate into '''carbonate''' (CO<sub>3</sub><sup>2-</sup>). Slightly soluble '''calcium carbonate''' ([https://pubchem.ncbi.nlm.nih.gov/compound/10112 CaCO<sub>3</sub>]) precipitates on the walls of the container or on the surface of the heating elements in the form of so-called scale.
* '''Trvalá tvrdost vody'''
* '''Permanent water hardness'''
:je tvořená rozpuštěnými solemi vápenatými a hořečnatými, kromě uhličitanů a hydrogenuhličitanů, tj. sírany, [[chloridy]], dusičnany a křemičitany.  
:it consists of '''dissolved calcium and magnesium salts''', in addition to carbonates and bicarbonates, i.e. sulfates, chlorides, nitrates and silicates.
* '''Celková tvrdost vody'''
* '''Total water hardness'''
:je součtem trvalé a přechodné tvrdosti.  
:is the sum of '''permanent''' and '''transient''' '''hardness''' of water.
:{|class = wikitable
:{|class = wikitable
  ! Označení vody dle stupňů tvrdosti* !! Koncentrace Ca<sup>2+</sup> + Mg<sup>2+</sup> (mmol/l)!! Příklad
  ! Marking of water according to degrees of hardness* !! Concentration Ca<sup>2+</sup> + Mg<sup>2+</sup> (mmol/l)!! Example
  |-
  |-
  | Velmi měkká || align = center |< 0,5 ||| dešťová voda
  | Very soft water || align="center" |< 0.5 ||| rainwater
  |-
  |-
  | Měkká || align = center |0,7–1,25|||voda z nerozpustných podloží
  | Soft water || align="center" |0.7–1.25|||water from insoluble subsoils
  |-
  |-
  | Středně tvrdá || align = center |1,26–2,5|||vodovodní voda
  | Moderately hard water || align="center" |1.26–2.5|||tap water
  |-
  |-
  | Tvrdá || align = center |2,6–3,75  |||studniční voda
  | Hard water || align="center" |2.6–3.75  |||well water
|-
|-
  | Velmi tvrdá || align = center |> 3,8|||voda z vápencových oblastí
  | Very hard water || align="center" |> 3.8|||water from limestone areas
|} <small>*Celková tvrdost vody se udává též v německých stupních tvrdosti '''°dH, °N'''. Definice jednotky °dH: 1 °dH ≈ 10 mg/l CaO resp. MgO. Přepočet tvrdosti vody z °dH na mmol/l: 1 mmol/l (Ca<sup><small>2+</small></sup> + Mg<sup><small>2+</small></sup>) ≈ 5,6 °dH; 1 °dH ≈ 0,18 mmol/l (Ca<sup><small>2+</small></sup> + Mg<sup><small>2+</small></sup>). </small>
|} <small>*Total water hardness is also given in German degrees of hardness °dH, °N. Definition of the °dH unit: 1 °dH ≈ 10 mg/l CaO or MgO. Conversion of water hardness from °dH to mmol/l: 1 mmol/l (Ca<sup>2+</sup> + Mg<sup>2+</sup>) ≈ 5.6 °dH; 1 °dH ≈ 0.18 mmol/l (Ca<sup>2+</sup> + Mg<sup>2+</sup>).</small>
 
 
=== Stanovení souhrnného obsahu vápenatých a hořečnatých iontů v pitné vodě ===
Principem stanovení je '''chelatometrická titrace''' – jedna z metod [[Odměrná analýza|odměrné analýzy]]. Při titraci kationty přítomné v roztoku vytvářejí s některými aminopolykarboxylovými kyselinami komplexy, které jsou sice rozpustné, ale jsou velmi málo disociované.
Titračním činidlem je nejčastěji roztok [[disodné soli ethylendiamintetraoctové kyseliny]], zkráceně Na<sub>2</sub>EDTA (chelaton 3, komplexon III). Na<sub>2</sub>EDTA vytváří s polyvalentními kationty chelátové komplexy, v nichž je poměr kovu a EDTA vždy 1:1.


K indikaci [[Bod ekvivalence|bodu ekvivalence]] slouží při komplexometrii tzv. '''metalochromní indikátory''' – barevné látky, které tvoří s ionty kovů rovněž komplexy.
=== Determination of the total content of calcium and magnesium ions in drinking water ===
Metalochromním indikátorem při stanovení Mg<sup>2+</sup> v alkalickém prostředí je [[eriochromčerň T]] (EČT). Roztok EČT je za podmínek titrace (pH 11) zbarven <span style="color: rgb(0, 0, 205);"> modře</span>. Chelátový komplex eriochromčerňi T s Mg<sup>2+</sup> (EČT–Mg) je zbarven <span style="color: rgb(205, 38, 38);"> vínově červeně</span>.  
The principle of determination is '''chelatometric titration''' - one of the methods of [[volumetric analysis]]. During [[Titration curve|titration]], the '''cations''' present in the solution form complexes with some aminopolycarboxylic acids, which, although soluble, are very little dissociated. The titrant is most often a solution of the '''disodium salt of''' '''ethylenediaminetetraacetic acid''', abbreviated [https://pubchem.ncbi.nlm.nih.gov/compound/8759 Na<sub>2</sub>EDTA] (chelaton 3, complexon III). Na<sub>2</sub>EDTA forms chelate complexes with polyvalent cations in which the ratio of metal and [https://pubchem.ncbi.nlm.nih.gov/compound/6049 EDTA] is always 1:1.  
 


In complexometry, so-called '''metallochromic indicators''' – coloered substances that also form complexes with metal ions – are used to indicate the '''equivalence point'''. The metallochromic indicator for the determination of Mg<sup>2+</sup> in an alkaline environment is '''[https://pubchem.ncbi.nlm.nih.gov/compound/135465089 eriochrome black T] (ECT)'''. The ''eriochrome black t solution'' is colored <u>blue</u> under titration conditions (pH 11). The chelate complex of eriochrome black T with Mg<sup>2+</sup> (ECT–Mg) is colored <u>wine red</u>.  
Při ''stanovení koncentrace samotných hořečnatých iontů'' se využívá skutečnosti, že komplex EČT-Mg je méně stabilní než chelát Mg-EDTA.  


When determining the ''concentration of the magnesium ions themselves'', the fact that the ECT-Mg complex is less stable than the Mg-EDTA chelate is used.


Za přítomnosti eriochromčerni T se v bodě ekvivalence mění vínově červené zbarvení komplexu EČT-Mg na modré zbarvení samotného indikátoru EČT.  
In the presence of eriochrome black T, at the equivalence point, the burgundy colour of the ECT-Mg complex changes to the blue colour of the ECT indicator itself.  


''Současné stanovení Ca<sup>2+</sup> a Mg<sup>2+</sup>'' je pak založeno na tom, že chelát Ca-EDTA je stabilnější než chelát Mg-EDTA. Na počátku titrace se k roztoku vzorku vody přidá roztok chelátu Mg-EDTA.  
The simultaneous determination of Ca<sup>2+</sup> and Mg<sup>2+</sup> is then based on the fact that the Ca-EDTA chelate is more stable than the Mg-EDTA chelate. At the beginning of the titration, the Mg-EDTA chelate solution is added to the water sample solution. If calcium and magnesium ions are present in the solution in a ratio of e.g. 2:1, the reaction will occur:  
Jsou-li v roztoku přítomny vápenaté a hořečnaté ionty v poměru např. 2:1, dojde k reakci:
[[File:Ca-EDTA (RNDr. Josef Tomandl, Ph.D.).jpg|center|frameless|490x490px|Mg-EDTA – titration & chelation]]
[[Soubor:Ca-EDTA.jpg | 500 px |center]]


Tímto se všechny kationty Ca<sup>2+</sup> v roztoku nahradí kationty Mg<sup>2+</sup>, které vytvoří s přidaným indikátorem vínově červený komplex:
This replaces all the Ca<sup>2+</sup> cations in the solution with Mg<sup>2+</sup> cations, which form a wine-red complex with the added indicator:  
[[Soubor:Mg-EČT.jpg | 500 px |center]]
[[File:Mg-ECT (RNDr. Josef Tomandl, Ph.D.).jpg|center|frameless|432x432px|Formation of Mg-ECT]]
The following '''chelatometric titration''' will take place only with Mg<sup>2+</sup>, which represent the sum of Ca<sup>2+</sup> and Mg<sup>2+</sup> in the original sample. The end of the titration is indicated by a pure blue colour of the indicator.
[[File:Mg-EDTA (RNDr. Josef Tomandl, Ph.D.).jpg|center|frameless|436x436px|Formation of Mg-EDTA]]


Následující chelatometrická titrace proběhne pouze s Mg<sup>2+</sup>, které představují souhrn Ca<sup>2+</sup> a Mg<sup>2+</sup> v původním vzorku. Konec titrace se projeví čistě modrým zbarvením indikátoru.
[[Soubor:Mg-EDTA.jpg | 500 px |center]]




'''Úkol:''' '''[[Stanovení souhrnného obsahu vápenatých a hořečnatých iontů v pitné vodě]]''' – pdf
'''Assignment:''' ''[[Determination of the total content of calcium and magnesium ions in drinking water]]'' - pdf.


== Dusičnany ==
== Nitrates ==
[[Dusičnany]] nejsou samy o sobě toxické, zčásti jsou však mikroflórou ústní dutiny, při některých infekcích i střevní mikroflórou, redukovány na '''toxické [[dusitany]]'''. Tato skutečnost může být významná při požití většího množství dusičnanů.
'''Nitrates''' are not toxic by themselves, but they are partially reduced to toxic nitrites by the '''microflora''' of the [[oral cavity]], and in some infections also by the [[intestinal microflora]]. This fact can be significant when a large amount of nitrates is ingested.


Přijatelný denní příjem je 4–5 mg NO<sub>3</sub><sup>−</sup>/kg tělesné hmotnosti, přitom podíl příjmu NO<sub>3</sub><sup>−</sup> pitnou představuje průměrně třetinu.  
An acceptable daily intake is '''4–5 mg NO<sub>3</sub><sup>−</sup>/kg of body weight''', while the share of NO<sub>3</sub><sup>−</sup> intake through drinking represents an average of one third.  


''Nejvyšší mezní hodnota'' NO<sub>3</sub><sup>−</sup> v pitné vodě je ''50 mg/l''.
'''''The highest limit value of NO<sub>3</sub><sup>−</sup> in drinking water is 50 mg/l.'''''  


Pro splnění podmínek jakosti pitné vody musí být dodržena následující podmínka:  
In order to meet the drinking water quality conditions, the following condition must be met:  
:<math>\frac{NO_3^- (mg/l)}{50}+ \frac{NO_2^- (mg/l)}{3}\leq 1</math>
:<math>\frac{NO_3^- (mg/l)}{50}+ \frac{NO_2^- (mg/l)}{3}\leq 1</math>


'''Voda pro kojence''' z pohledu prevence dusičnanové alimentární [[Methemoglobin|methemoglobinaemie]] může obsahovat jen do '''15 mg NO<sub>3</sub><sup>−</sup>/l'''.
From the point of view of <u>prevention</u> of '''nitrate alimentary [[methemoglobinemia]]''', water for infants can only contain up to '''15 mg NO<sub>3</sub><sup>−</sup>/l.'''  


V potravě je nejvyšší obsah dusičnanů v některých druzích zeleniny (zvláště kořenové), kde často přesahuje hodnotu 1000 mg/kg. Nejméně dusičnanů obsahuje plodová zelenina, nejvíce červená řepa, skleníkové ředkvičky a saláty.  
In food, the highest content of nitrates is in some types of vegetables (especially root vegetables), where it often exceeds the value of 1000 mg/kg. Fruit vegetables contain the least nitrates, beetroot, greenhouse radishes and salads the most. A high concentration of NO<sub>3</sub><sup>−</sup> in a water source usually signals the penetration of water through layers with a significant level of biological processes, and therefore a significant probability of bacterial contamination.
Vysoká koncentrace NO<sub>3</sub><sup>−</sup> ve vodním zdroji signalizuje zpravidla průnik vody vrstvami se značnou úrovní biologických dějů, a tedy značnou pravděpodobnost bakteriální kontaminace.  


=== Proof of nitrates in water by means of diphenylamine ===
Nitrates oxidize diphenylamine in a concentrated H<sub>2</sub>SO<sub>4</sub> environment to a blue colored product.


=== Důkaz dusičnanů ve vodě pomocí difenylaminu ===
<small>The same reaction is also provided by nitrites (even in a diluted H<sub>2</sub>SO<sub>4</sub> environment), but these can be demonstrated by a specific diazotization reaction.</small>
Dusičnany oxidují v prostředí ''koncentrované'' H<sub>2</sub>SO<sub>4</sub> difenylamin na modře zbarvený produkt.  


<small>Stejnou reakci poskytují i dusitany (a to i v prostředí ''zředěné'' H<sub>2</sub>SO<sub>4</sub>), ty však lze prokázat specifickou diazotační reakcí. </small>
'''Assignment:''' [[Proof of nitrates in water using diphenylamine]] - pdf.
=== Determination of nitrates in water using salicylic acid ===
NO<sub>3</sub><sup></sup> ions react in a strongly acidic environment with salicylic acid. Salicylic acid is nitrated and upon alkalization yields a yellow nitrosalicylate, which is determined spectrophotometrically at 410 nm.


'''Úkol:''' '''[[Důkaz dusičnanů ve vodě pomocí difenylaminu]]''' – pdf
'''Assignment:''' [[Determination of nitrates in water using salicylic acid]] - pdf.
=== Indicative determination of nitrates in water using Nitrotest strips ===
Nitrates are reduced to nitrites using a reducing agent contained in the indicator zone of the strip. Nitrous acid, which diazotizes the aromatic amine, is displaced from the nitrites by a strongly acidic buffer. Its coupling with ''N-(1-naphthyl)-ethylenediamine'' produces a red-violet colored azo compound. The intensity of the coloration of the zone is proportional to the concentration of nitrates present in the sample.


<small>If, in addition to nitrates, nitrites are present in the sample, the colouring of the zone corresponds to their sum.</small>


=== Stanovení dusičnanů ve vodě pomocí salicylové kyseliny ===
'''Assignment:''' [[Indicative determination of nitrates in water using Nitrotest strips]] - pdf.
Ionty NO<sub>3</sub><sup>−</sup> reagují v silně kyselém prostředí se salicylovou kyselinou. Salicylová kyselina se nitruje a po alkalizaci poskytuje žlutý nitrosalicylát, který se stanoví spektrofotometricky při 410 nm.
=== Determination of nitrate in water using an ion-selective electrode ===
The electromotive voltage E of an unloaded [[galvanic cell]] consisting of a '''nitrate ion selective electrode (ISE)''' and a reference '''silver chloride electrode''' with a double salt bridge with a K<sub>2</sub>SO<sub>4</sub> solution as a bridge electrolyte is measured (SO<sub>4</sub><sup>2−</sup> ions do not affect the potential of the nitrate ISE). The measuring part of the nitrate ISE is a solid plastic membrane in which an [[ionophore]] sensitive to NO<sub>3</sub><sup>−</sup> ions is dissolved as a softener. The ISE changes its electric potential according to the [[Nernst relation]], i.e. proportional to the logarithm of the activity of nitrate ions ''a''NO<sub>3</sub><sup>−</sup> in the solution in the range of 10<sup>−6</sup>–10<sup>−1</sup> mol/l:
::''' ''E'' = const. − 59,2×log(''a''<sub>NO<sub>3</sub><sup>−</sup></sub> + selectivity coeff. × ''a''<sub>interfering ions</sub>)'''
For sufficient measurement accuracy, the following must apply:
::'''Activity of NO<sub>3</sub><sup>−</sup> >> (selectivity coeff. × activity interfering ions)'''.
If the above condition is not met, the interfering ions must be removed, e.g. by precipitation or masking in the complex.  


'''Úkol:''' '''[[Stanovení dusičnanů ve vodě pomocí salicylové kyseliny]]''' – pdf
'''Interfering ions for nitrate ISE''' in the order from max. to min.: ClO<sub>4</sub><sup>−</sup> >> I<sup>−</sup> > Br<sup>−</sup> >> HCO<sub>3</sub><sup>−</sup> > NO<sub>2</sub><sup>−</sup> > Cl<sup>−</sup> >> H<sub>2</sub>PO<sub>4</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>.


The membrane is very sensitive to [[lipophilic]] substances that irreversibly damage the [[Cell membrane|membrane]]. To determine the nitrate concentration, a calibration graph is made: the measured voltage E of several calibration solutions with a known concentration of NO<sub>3</sub><sup>−</sup> ions is plotted as a dependence of the voltage ''E'' on the logarithm of the NO<sub>3</sub><sup>−</sup> concentration. From the measured voltage ''E'' in the unknown sample, the value of log c(NO<sub>3</sub><sup>−</sup>) can then be subtracted from the graph and c(NO<sub>3</sub><sup>−</sup>) can be obtained in units of mol/l by taking the '''logarithm'''.


=== Orientační stanovení dusičnanů ve vodě pomocí proužků Nitrotest ===
<small>Nitrate content in vegetable juices or extracts can be determined in a similar way.</small>
Dusičnany jsou pomocí redukčního činidla, obsaženého v indikační zóně proužku, redukovány na dusitany. Z dusitanů je silně kyselým pufrem vytěsněna kyselina dusitá, která diazotuje aromatický amin. Jeho kopulací s ''N''-(1-naftyl)-ethylendiaminem vzniká červenofialově zbarvená azosloučenina. Intenzita zabarvení zóny je úměrná koncentraci dusičnanů přítomných ve vzorku.  


<small>Jsou-li ve vzorku přítomny vedle dusičnanů i dusitany, zbarvení zóny odpovídá jejich součtu. </small>
'''Assignment:''' [[Determination of nitrates in water using an ion-selective electrode]] - pdf.


'''Úkol:''' '''[[Orientační stanovení dusičnanů ve vodě pomocí proužků Nitrotest]]''' – pdf
== Nitrites ==
Nitrites are toxic (from a few tens of milligrams for humans), cause, among other things, the oxidation of [[hemoglobin]] to '''hemiglobin''' ([[methemoglobin]]) or react in the digestive tract with secondary amines, or amides taken with food to form nitrosamines, or nitrosamides, some of which are strongly '''carcinogenic'''. The formation of nitrosamines/nitrosamides is strongly suppressed with the simultaneous administration of [[vitamin C]].


According to the decree, the highest limit value of NO<sub>2</sub><sup>−</sup> in drinking water is 0.5 mg/l.


=== Stanovení dusičnanů ve vodě pomocí iontově selektivní elektrody ===
The presence of nitrites in water usually means significant water pollution when it passes through highly biologically active layers.
Měří se elektromotorické napětí ''E'' nezatíženého galvanického článku tvořeného dusičnanovou iontově selektivní elektrodou (ISE) a referentní argentchloridovou elektrodou s dvojitým solným můstkem s roztokem K<sub>2</sub>SO<sub>4</sub> jako můstkovým elektrolytem (SO<sub>4</sub><sup>2−</sup> ionty neovlivňují potenciál dusičnanové ISE).
Měrnou částí dusičnanové ISE je pevná plastová membrána, ve které je jako změkčovadlo rozpuštěn ionofor citlivý na NO<sub>3</sub><sup>−</sup> ionty.
ISE mění svůj elektrický potenciál podle [[Nernstova rovnice|Nernstova vztahu]], tzn. úměrně logaritmu aktivity dusičnanových iontů ''a''<sub>NO<sub>3</sub><sup>−</sup></sub> v roztoku v rozmezí 10<sup>−6</sup>–10<sup>−1</sup> mol/l:
::''' ''E'' = konst. − 59,2×log(''a''<sub>NO<sub>3</sub><sup>−</sup></sub> + koef. selektivity × ''a''<sub>interferujících iontů</sub>)'''
Pro dostatečnou přesnost měření musí platit:
::'''aktivita NO<sub>3</sub><sup>−</sup> >> (koef. selektivity × aktivita interferujících iontů)'''.
Pokud není splněna výše uvedená podmínka, je nutno interferující ionty odstranit, např. vysrážením nebo maskováním v komplexu.  


'''Interferující ionty pro dusičnanovou ISE''' jsou v pořadí: nejvíce ClO<sub>4</sub><sup>−</sup> >> I<sup>−</sup> > Br<sup>−</sup> >> HCO<sub>3</sub><sup>−</sup> > NO<sub>2</sub><sup>−</sup> > Cl<sup>−</sup> >> H<sub>2</sub>PO<sub>4</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>.  
=== Nitrite confirmation ===
A specific and very sensitive reaction for the evidence of nitrites is the '''diazotization reaction''', in which nitrite reacts with sulfanilic acid in an acetic acid environment to form a diazonium salt that couples with ''1-naphthylamine-7-sulfonate'' to form a '''red-violet azo dye''':
[[File:Diazotisation (RNDr. Josef Tomandl, Ph.D.).jpg|center|frameless|453x453px|Diazotisation]]


Membrána je velmi citlivá na lipofilní látky, které membránu nenávratně poškozují.
<small>The method can also be used for quantitative <u>photometric determination</u> of nitrites.</small>
Pro stanovení koncentrace dusičnanů se zhotoví kalibrační graf: změřené napětí ''E'' několika kalibračních roztoků o známé koncentraci iontů NO<sub>3</sub><sup>−</sup> je vyneseno do grafu jako závislost napětí ''E'' na logaritmu koncentrace NO<sub>3</sub><sup>−</sup>. Ze změřeného napětí ''E'' v neznámém vzorku lze pak v grafu odečíst hodnotu log ''c''(NO<sub>3</sub><sup>−</sup>) a odlogaritmováním získat ''c''(NO<sub>3</sub><sup>−</sup>) v jednotkách mol/l.


<small>Obdobným způsobem lze stanovit obsah dusičnanů v zeleninových šťávách nebo extraktech.</small>
'''Assignment:''' [[Evidence of nitrites by diazotization reaction]] - pdf.


'''Úkol:''' '''[[Stanovení dusičnanů ve vodě pomocí iontově selektivní elektrody]]''' – pdf


== Dusitany ==
== Ammonium ions ==
Dusitany jsou toxické (pro člověka od několika desítek miligramů), způsobují kromě jiného oxidaci [[hemoglobin]]u na [[hemiglobin]] (methemoglobin) nebo reagují v trávicím traktu se sekundárními aminy, resp. amidy přijatými potravou za vzniku nitrosaminů, resp. nitrosamidů, z nichž některé jsou silně karcinogenní. Vznik nitrosaminů/nitrosamidů je silně potlačen při současném podání [[Kyselina askorbová|vitaminu C]].
The highest limit concentration of NH<sub>4</sub><sup>+</sup> in drinking water is 0.5 mg/l.  


Dle vyhlášky nejvyšší mezní hodnota NO<sub>2</sub><sup></sup> v pitné vodě je 0,5 mg/l.
The NH<sub>4</sub><sup>+</sup>/NH<sub>3</sub> ratio in the solution depends on the pH value.  
Přítomnost dusitanů ve vodě znamená zpravidla značné znečištění vody při jejím prostupu vysoce biologicky aktivními vrstvami.


The presence of NH<sub>4</sub><sup>+</sup> cations (or ammonia in '''alkaline waters''') is usually an indicator of gross '''pollution of drinking water''' by decomposition products of nitrogenous organic substances, mainly proteins and [[urea]] (leakage from sewers, cesspools, silage pits, etc.).
=== Evidence of ammonium ions ===
'''Nessler's reagent''' (alkaline solution K<sub>2</sub>[HgI<sub>4</sub>]) can be used to prove NH<sub>4</sub><sup>+</sup> ions.


=== Důkaz dusitanů ===
<small>The reaction is also used for the photometric determination of ammonia and ammonium salts.</small>
Specifickou a velmi citlivou reakcí na důkaz dusitanů je diazotační reakce, při níž reaguje dusitan se sulfanilovou kyselinou v prostředí octové kyseliny za vzniku diazoniové soli, která kopuluje s 1-naftylamin-7-sulfonátem za vzniku červenofialového azobarviva:


[[Soubor:diazotace.jpg | center|500px|]]
'''Assignment:''' [[Evidence of ammonium ions]] - pdf.
 
=== Determination of ammonia by back titration ===
 
'''Ammonia''' is a volatile substance and significant losses occur during the titration. Therefore, '''back titration''' is used in the determination of ammonia. The essence of the back titration is to add an excess of HCl solution, which reacts with ammonia to form NH<sub>4</sub>Cl.  
<small>Metodu lze využít i ke kvantitativnímu [[Fotometrie|fotometrickému stanovení]] dusitanů.</small>
:'''NH<sub>3</sub> + HCl &rarr; NH<sub>4</sub>Cl'''
 
The excess of the HCl solution is subsequently titrated with a standard NaOH solution.
'''Úkol:''' '''[[Důkaz dusitanů diazotační reakcí]]''' – pdf
 
 
== Amonné ionty ==
Nejvyšší mezní koncentrace NH<sub>4</sub><sup>+</sup> v pitné vodě je 0,5 mg/l.  
 
Poměr NH<sub>4</sub><sup>+</sup>/NH<sub>3</sub> v roztoku závisí na hodnotě pH.
 
Přítomnost kationtů NH<sub>4</sub><sup>+</sup> (nebo amoniaku v alkalických vodách) je většinou ukazatelem hrubého znečištění pitné vody produkty rozkladu dusíkatých organických látek, hlavně [[protein]]ů a [[Urea|močoviny]] (průsaky z kanalizace, žump, silážních jam, aj.).
 
 
=== Důkaz amonných iontů ===
Na důkaz iontů NH<sub>4</sub><sup>+</sup> lze použít Nesslerovo činidlo (alkalický roztok K<sub>2</sub>[HgI<sub>4</sub>]).
 
<small>Reakce je využívána i k fotometrickému stanovení amoniaku a amonných solí.</small>
 
'''Úkol:''' '''[[Důkaz amonných iontů]]''' – pdf


'''Assignment:''' [[Determination of ammonia by back titration]] - pdf.


=== Stanovení amoniaku zpětnou titrací ===
Amoniak je těkavá látka a během titrace dochází ke značným ztrátám. Proto při stanovení amoniaku se používá '''zpětná titrace'''.
Podstata zpětné titrace spočívá v přidaní přebytku roztoku HCl, který zreaguje s amoniakem za vzniku NH<sub>4</sub>Cl.
:'''NH<sub>3</sub> + HCl &rarr; NH<sub>4</sub>Cl'''
Nadbytek roztoku HCl se následně titruje odměrným roztokem NaOH.


'''Úkol:''' '''[[Stanovení amoniaku zpětnou titrací]]''' – pdf


== Anions of phosphoric acid ==
'''''Trihydrogenphosphoric acid''''' is a triacid  (p''K''<sub>A1</sub> = 2,1; p''K''<sub>A2</sub> = 7,2; p''K''<sub>A3</sub> = 12,3). It is stable, has no oxidising properties.


== Anionty kyseliny fosforečné ==
The '''p''K''<sub>A</sub> values''' ​​show that it dissociates as a moderately strong acid to the 1st degree, as a weak acid to the 2nd degree, and as a very weak acid to the 3rd degree.
[[Kyselina trihydrogenfosforečná]] je trojsytná kyselina (p''K''<sub>A1</sub> = 2,1; p''K''<sub>A2</sub> = 7,2; p''K''<sub>A3</sub> = 12,3). Je stálá, nemá oxidační vlastnosti.  


Z p''K''<sub>A</sub> hodnot vyplývá, že do 1. stupně disociuje jako středně silná, do 2. stupně jako slabá a 3. stupně jako velmi slabá kyselina.
=== Verification of the solubility of phosphates depending on the [[PH-metric|pH]] of the solution ===
[[Soubor:titrační křivka H3PO4.jpg | right|300px]]
In '''phosphate solutions''', depending on the pH, H<sub>2</sub>PO<sub>4</sub><sup>−</sup> ions exist only in acidic and neutral reactions, HPO<sub>4</sub><sup>2−</sup> ions in slightly acidic to alkaline solutions, and PO<sub>4</sub><sup>3−</sup> ions only in strongly alkaline solutions. By acidifying the solutions, phosphates change to hydrogen phosphates and dihydrogen phosphates, by alkalising, the '''[[Equilibrium|equilibrium state]]''' shifts to phosphates.


=== Ověření rozpustnosti fosforečnanů v závislosti na [[pH]] roztoku ===
Changes taking place in phosphate solutions depending on pH are described by the phosphoric acid titration curve.
V roztocích fosforečnanů existují v závislosti na pH ionty H<sub>2</sub>PO<sub>4</sub><sup>−</sup> jen za kyselé a neutrální reakce, ionty HPO<sub>4</sub><sup>2−</sup> v roztocích mírně kyselých až alkalických a ionty PO<sub>4</sub><sup>3−</sup> pouze ve značně alkalických roztocích. Okyselením roztoků přechází fosforečnany na hydrogenfosforečnany a dihydrogenfosforečnany, alkalizací se posunuje rovnovážný stav až k fosforečnanům.  
[[File:Titration curve H3PO4 (RNDr. Josef Tomandl, Ph.D.).jpg|thumb|211x211px|Titration curve H<sub>3</sub>PO<sub>4</sub>]]
'''Assignment:''' [[Verification of the solubility of phosphates depending on the pH of the solution]] - pdf.


== Carbonic acid anions ==
Carbonic acid is a very unstable, weak acid (p''K''<sub>A1</sub><sup>'</sup> = 6,4, p''K''<sub>A2</sub><sup>'</sup> = 10,3).


Změny probíhající v roztocích fosforečnanů v závislosti na pH vystihuje titrační křivka kyseliny fosforečné.  
It can be completely expelled from the solution by heating in the form of CO<sub>2</sub>.  
=== Evidence of carbonates and bicarbonates in solution ===


'''Úkol:''' '''[[Ověření rozpustnosti fosforečnanů v závislosti na pH roztoku]]''' – pdf
'''Assignment:''' [[Evidence of carbonates and bicarbonates in solution]] - pdf.


== Anionty kyseliny uhličité ==
Kyselina uhličitá je velmi nestálá, slabá kyselina (p''K''<sub>A1</sub><sup>'</sup> = 6,4, p''K''<sub>A2</sub><sup>'</sup> = 10,3).
Z roztoku ji lze úplně vypudit zahřátím ve formě CO<sub>2</sub>.


== Links==
===Related articles===
*[[Drinking Water|Drinking water]]
*[[Methemoglobin]]
*[[PH-metric]]


=== Důkaz uhličitanů a hydrogenuhličitanů v roztoku ===
===Bibliography===
*{{Cite
| type = article
| surname1 = Bahruddin
| name1 = Saad
| surname2 = Fen
| name2 = Wei Pok
| others = yes
| article = Analysis of anions and cations in drinking water samples by Capillary Ion Analysis
| journal = Food Chemistry
| volume = 61
| issue = 1-2
| year = January 1998
| publisher = Elsevier
| cited = 2022-12-01
| pages = 249-254
| issn = 0308-8146
| doi = 10.1016/S0308-8146(97)00024-1
}}
*{{Cite
| type = article
| surname1 = Kumar
| name1 = Manoj
| surname1 = Puri
| name1 = Avinash
| article = A review of permissible limits of drinking water
| journal = Indian J Occup Environ Med.
| volume = 16
| issue = 1
| year = 2012
| cited = 2022-12-01
| pages = 40-44
| issn = -
| doi = 10.4103/0019-5278.99696
}}
*{{Cite
| type = article
| surname1 = Li
| name1 = Xiaoping
| others = yes
| article = Major ions in drinking and surface waters from five cities in arid and semi-arid areas, NW China: spatial occurrence, water chemistry, and potential anthropogenic inputs
| journal = Environ Sci Pollut Res Int.
| volume = 27
| issue = 5
| year = 2020
| cited = 2022-12-01
| pages = 5456-5468
| issn = -
| doi = 10.1007/s11356-019-07149-9
}}
*{{Cite
| type = web
| corporation = United States Geological Survey
| source_name = Ground-Water Quality
| publisher = United States Geological Survey
| cited = 2022-12-01
| url = https://pubs.usgs.gov/wri/wri024045/htms/report2.htm
}}


'''Úkol:''' '''[[Důkaz uhličitanů a hydrogenuhličitanů v roztoku]]''' – pdf


[[Category:Biochemistry]]
[[Category:Biochemistry]] [[Category:HEPL]]

Latest revision as of 19:40, 1 December 2022

Composition of drinking water[edit | edit source]

Water found in nature contains a mixture of dissolved salts and compounds. Drinking water is water whose physical-chemical properties do not pose a threat to health. Indicators of health safety and purity of drinking water are specified in detail in Decree of the Ministry of Health of the Czech Republic No. 252/2004 Coll. The value of the drinking water quality indicator, the exceeding of which usually does not represent an acute health risk, is referred to as the limit value. The highest limit value means the value of a health-significant indicator of the quality of drinking water, as a result of which it is exceeded, the use of the water as drinking water is excluded.

Mineral waters contain more than 1 g of dissolved salts in 1 liter. Waters with a high Ca2+ or Mg2+ content are earthy (e.g. "Rudolfův pramen", "Hanácká kyselka", which contain calcium bicarbonate, "Magnesia" containing magnesium bicarbonate) or e.g. bitter ("Šaratice" containing magnesium sulfate).

A number of ions present in water are very important for the human organism, but some are undesirable and toxic at higher concentrations. Of the ions, e.g. Ca2+ ions (alone or together with Mg2+ ions), Fe3+, NH4+, NO2 and NO3 ions are monitored in drinking water.

Calcium and magnesium ions (hardness of water)[edit | edit source]

The concentration of calcium and magnesium salts is one of the indicators of water quality and is referred to as the so-called water hardness. Ca2+ and Mg2+ cations are very important for the human organism, so their presence is desirable. A high amount of Ca2+ and Mg2+ cations worsens some of the useful properties of water - settling of insoluble residues (so-called scale) on the walls of containers, reducing the effectiveness of soaps, etc.

From a health point of view, recommended concentrations in drinking water:

Ca2+ 40–80 mg/l
Mg2+ 20–30 mg/l

According to the amount of Ca2+ and Mg2+ salts, we distinguish:

  • Transient water hardness
it is made up of calcium and magnesium carbonates and bicarbonates. At a given temperature and pressure, there is an equilibrium between dissolved carbon dioxide (CO2) and bicarbonates (HCO3) in the solution. By heating the solution, carbon dioxide (CO2) escapes from it, breaking the equilibrium, which leads to the gradual conversion of bicarbonate into carbonate (CO32-). Slightly soluble calcium carbonate (CaCO3) precipitates on the walls of the container or on the surface of the heating elements in the form of so-called scale.
  • Permanent water hardness
it consists of dissolved calcium and magnesium salts, in addition to carbonates and bicarbonates, i.e. sulfates, chlorides, nitrates and silicates.
  • Total water hardness
is the sum of permanent and transient hardness of water.
Marking of water according to degrees of hardness* Concentration Ca2+ + Mg2+ (mmol/l) Example
Very soft water < 0.5 rainwater
Soft water 0.7–1.25 water from insoluble subsoils
Moderately hard water 1.26–2.5 tap water
Hard water 2.6–3.75 well water
Very hard water > 3.8 water from limestone areas
*Total water hardness is also given in German degrees of hardness °dH, °N. Definition of the °dH unit: 1 °dH ≈ 10 mg/l CaO or MgO. Conversion of water hardness from °dH to mmol/l: 1 mmol/l (Ca2+ + Mg2+) ≈ 5.6 °dH; 1 °dH ≈ 0.18 mmol/l (Ca2+ + Mg2+).

Determination of the total content of calcium and magnesium ions in drinking water[edit | edit source]

The principle of determination is chelatometric titration - one of the methods of volumetric analysis. During titration, the cations present in the solution form complexes with some aminopolycarboxylic acids, which, although soluble, are very little dissociated. The titrant is most often a solution of the disodium salt of ethylenediaminetetraacetic acid, abbreviated Na2EDTA (chelaton 3, complexon III). Na2EDTA forms chelate complexes with polyvalent cations in which the ratio of metal and EDTA is always 1:1.

In complexometry, so-called metallochromic indicators – coloered substances that also form complexes with metal ions – are used to indicate the equivalence point. The metallochromic indicator for the determination of Mg2+ in an alkaline environment is eriochrome black T (ECT). The eriochrome black t solution is colored blue under titration conditions (pH 11). The chelate complex of eriochrome black T with Mg2+ (ECT–Mg) is colored wine red.

When determining the concentration of the magnesium ions themselves, the fact that the ECT-Mg complex is less stable than the Mg-EDTA chelate is used.

In the presence of eriochrome black T, at the equivalence point, the burgundy colour of the ECT-Mg complex changes to the blue colour of the ECT indicator itself.

The simultaneous determination of Ca2+ and Mg2+ is then based on the fact that the Ca-EDTA chelate is more stable than the Mg-EDTA chelate. At the beginning of the titration, the Mg-EDTA chelate solution is added to the water sample solution. If calcium and magnesium ions are present in the solution in a ratio of e.g. 2:1, the reaction will occur:

Mg-EDTA – titration & chelation

This replaces all the Ca2+ cations in the solution with Mg2+ cations, which form a wine-red complex with the added indicator:

Formation of Mg-ECT

The following chelatometric titration will take place only with Mg2+, which represent the sum of Ca2+ and Mg2+ in the original sample. The end of the titration is indicated by a pure blue colour of the indicator.

Formation of Mg-EDTA


Assignment: Determination of the total content of calcium and magnesium ions in drinking water - pdf.

Nitrates[edit | edit source]

Nitrates are not toxic by themselves, but they are partially reduced to toxic nitrites by the microflora of the oral cavity, and in some infections also by the intestinal microflora. This fact can be significant when a large amount of nitrates is ingested.

An acceptable daily intake is 4–5 mg NO3/kg of body weight, while the share of NO3 intake through drinking represents an average of one third.

The highest limit value of NO3 in drinking water is 50 mg/l.

In order to meet the drinking water quality conditions, the following condition must be met:

From the point of view of prevention of nitrate alimentary methemoglobinemia, water for infants can only contain up to 15 mg NO3/l.

In food, the highest content of nitrates is in some types of vegetables (especially root vegetables), where it often exceeds the value of 1000 mg/kg. Fruit vegetables contain the least nitrates, beetroot, greenhouse radishes and salads the most. A high concentration of NO3 in a water source usually signals the penetration of water through layers with a significant level of biological processes, and therefore a significant probability of bacterial contamination.

Proof of nitrates in water by means of diphenylamine[edit | edit source]

Nitrates oxidize diphenylamine in a concentrated H2SO4 environment to a blue colored product.

The same reaction is also provided by nitrites (even in a diluted H2SO4 environment), but these can be demonstrated by a specific diazotization reaction.

Assignment: Proof of nitrates in water using diphenylamine - pdf.

Determination of nitrates in water using salicylic acid[edit | edit source]

NO3 ions react in a strongly acidic environment with salicylic acid. Salicylic acid is nitrated and upon alkalization yields a yellow nitrosalicylate, which is determined spectrophotometrically at 410 nm.

Assignment: Determination of nitrates in water using salicylic acid - pdf.

Indicative determination of nitrates in water using Nitrotest strips[edit | edit source]

Nitrates are reduced to nitrites using a reducing agent contained in the indicator zone of the strip. Nitrous acid, which diazotizes the aromatic amine, is displaced from the nitrites by a strongly acidic buffer. Its coupling with N-(1-naphthyl)-ethylenediamine produces a red-violet colored azo compound. The intensity of the coloration of the zone is proportional to the concentration of nitrates present in the sample.

If, in addition to nitrates, nitrites are present in the sample, the colouring of the zone corresponds to their sum.

Assignment: Indicative determination of nitrates in water using Nitrotest strips - pdf.

Determination of nitrate in water using an ion-selective electrode[edit | edit source]

The electromotive voltage E of an unloaded galvanic cell consisting of a nitrate ion selective electrode (ISE) and a reference silver chloride electrode with a double salt bridge with a K2SO4 solution as a bridge electrolyte is measured (SO42− ions do not affect the potential of the nitrate ISE). The measuring part of the nitrate ISE is a solid plastic membrane in which an ionophore sensitive to NO3 ions is dissolved as a softener. The ISE changes its electric potential according to the Nernst relation, i.e. proportional to the logarithm of the activity of nitrate ions aNO3 in the solution in the range of 10−6–10−1 mol/l:

E = const. − 59,2×log(aNO3 + selectivity coeff. × ainterfering ions)

For sufficient measurement accuracy, the following must apply:

Activity of NO3 >> (selectivity coeff. × activity interfering ions).

If the above condition is not met, the interfering ions must be removed, e.g. by precipitation or masking in the complex.

Interfering ions for nitrate ISE in the order from max. to min.: ClO4 >> I > Br >> HCO3 > NO2 > Cl >> H2PO4, SO42−.

The membrane is very sensitive to lipophilic substances that irreversibly damage the membrane. To determine the nitrate concentration, a calibration graph is made: the measured voltage E of several calibration solutions with a known concentration of NO3 ions is plotted as a dependence of the voltage E on the logarithm of the NO3 concentration. From the measured voltage E in the unknown sample, the value of log c(NO3) can then be subtracted from the graph and c(NO3) can be obtained in units of mol/l by taking the logarithm.

Nitrate content in vegetable juices or extracts can be determined in a similar way.

Assignment: Determination of nitrates in water using an ion-selective electrode - pdf.

Nitrites[edit | edit source]

Nitrites are toxic (from a few tens of milligrams for humans), cause, among other things, the oxidation of hemoglobin to hemiglobin (methemoglobin) or react in the digestive tract with secondary amines, or amides taken with food to form nitrosamines, or nitrosamides, some of which are strongly carcinogenic. The formation of nitrosamines/nitrosamides is strongly suppressed with the simultaneous administration of vitamin C.

According to the decree, the highest limit value of NO2 in drinking water is 0.5 mg/l.

The presence of nitrites in water usually means significant water pollution when it passes through highly biologically active layers.

Nitrite confirmation[edit | edit source]

A specific and very sensitive reaction for the evidence of nitrites is the diazotization reaction, in which nitrite reacts with sulfanilic acid in an acetic acid environment to form a diazonium salt that couples with 1-naphthylamine-7-sulfonate to form a red-violet azo dye:

Diazotisation

The method can also be used for quantitative photometric determination of nitrites.

Assignment: Evidence of nitrites by diazotization reaction - pdf.


Ammonium ions[edit | edit source]

The highest limit concentration of NH4+ in drinking water is 0.5 mg/l.

The NH4+/NH3 ratio in the solution depends on the pH value.

The presence of NH4+ cations (or ammonia in alkaline waters) is usually an indicator of gross pollution of drinking water by decomposition products of nitrogenous organic substances, mainly proteins and urea (leakage from sewers, cesspools, silage pits, etc.).

Evidence of ammonium ions[edit | edit source]

Nessler's reagent (alkaline solution K2[HgI4]) can be used to prove NH4+ ions.

The reaction is also used for the photometric determination of ammonia and ammonium salts.

Assignment: Evidence of ammonium ions - pdf.

Determination of ammonia by back titration[edit | edit source]

Ammonia is a volatile substance and significant losses occur during the titration. Therefore, back titration is used in the determination of ammonia. The essence of the back titration is to add an excess of HCl solution, which reacts with ammonia to form NH4Cl.

NH3 + HCl → NH4Cl

The excess of the HCl solution is subsequently titrated with a standard NaOH solution.

Assignment: Determination of ammonia by back titration - pdf.


Anions of phosphoric acid[edit | edit source]

Trihydrogenphosphoric acid is a triacid (pKA1 = 2,1; pKA2 = 7,2; pKA3 = 12,3). It is stable, has no oxidising properties.

The pKA values ​​show that it dissociates as a moderately strong acid to the 1st degree, as a weak acid to the 2nd degree, and as a very weak acid to the 3rd degree.

Verification of the solubility of phosphates depending on the pH of the solution[edit | edit source]

In phosphate solutions, depending on the pH, H2PO4 ions exist only in acidic and neutral reactions, HPO42− ions in slightly acidic to alkaline solutions, and PO43− ions only in strongly alkaline solutions. By acidifying the solutions, phosphates change to hydrogen phosphates and dihydrogen phosphates, by alkalising, the equilibrium state shifts to phosphates.

Changes taking place in phosphate solutions depending on pH are described by the phosphoric acid titration curve.

Titration curve H3PO4

Assignment: Verification of the solubility of phosphates depending on the pH of the solution - pdf.

Carbonic acid anions[edit | edit source]

Carbonic acid is a very unstable, weak acid (pKA1' = 6,4, pKA2' = 10,3).

It can be completely expelled from the solution by heating in the form of CO2.

Evidence of carbonates and bicarbonates in solution[edit | edit source]

Assignment: Evidence of carbonates and bicarbonates in solution - pdf.


Links[edit | edit source]

Related articles[edit | edit source]

Bibliography[edit | edit source]

  • BAHRUDDIN, Saad – FEN, Wei Pok. , et al. Analysis of anions and cations in drinking water samples by Capillary Ion Analysis. Food Chemistry. January 1998, vol. 61, p. 249-254, ISSN 0308-8146. DOI: 10.1016/S0308-8146(97)00024-1.
  • PURI, Avinash. A review of permissible limits of drinking water. Indian J Occup Environ Med.. 2012, vol. 16, p. 40-44, DOI: 10.4103/0019-5278.99696.
  • LI, Xiaoping. , et al. Major ions in drinking and surface waters from five cities in arid and semi-arid areas, NW China: spatial occurrence, water chemistry, and potential anthropogenic inputs. Environ Sci Pollut Res Int.. 2020, vol. 27, p. 5456-5468, DOI: 10.1007/s11356-019-07149-9.