Hemoglobin and its derivatives: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{under construction}} | {{under construction}} | ||
'''Hemoglobin''' is a red blood pigment that transports oxygen from the lungs to the tissues and transports CO2 and protons from peripheral tissues to the respiratory system. | '''Hemoglobin''' is a red blood pigment that transports oxygen from the lungs to the tissues and transports CO2 and protons from peripheral tissues to the respiratory system. | ||
The hemoglobin concentration in a healthy adult male is approximately 150 g / l, in an adult female about 140 g / l. One gram of hemoglobin can bind up to 1.34 ml of oxygen.<ref name="Švíglerová">{{Citace| typ = web| příjmení1 = Švíglerová| jméno1 = Jitka| url = https://web.archive.org/web/20160416205421/http://wiki.lfp-studium.cz/index.php/Hemoglobin| název = Hemoglobin| datum_revize = 2009-02-18| citováno = 2010-11-11}}</ref> | The hemoglobin concentration in a healthy adult male is approximately 150 g / l, in an adult female about 140 g / l. One gram of hemoglobin can bind up to 1.34 ml of oxygen.<ref name="Švíglerová">{{Citace| typ = web| příjmení1 = Švíglerová| jméno1 = Jitka| url = https://web.archive.org/web/20160416205421/http://wiki.lfp-studium.cz/index.php/Hemoglobin| název = Hemoglobin| datum_revize = 2009-02-18| citováno = 2010-11-11}}</ref> | ||
Line 194: | Line 191: | ||
* in healthy adults up to '''39 mmol/mol''', (2.8–4.0%) [8] | * in healthy adults up to '''39 mmol/mol''', (2.8–4.0%) [8] | ||
* In diabetics, HbA1c concentrations of up to 45 mmol/mol (4.5%) indicate excellent diabetes compensation, up to 60 mmol / mol (6.0%) of acceptable and higher values of unsatisfactory diabetes compensation [9] | * In diabetics, HbA1c concentrations of up to 45 mmol/mol (4.5%) indicate excellent diabetes compensation, up to 60 mmol / mol (6.0%) of acceptable and higher values of unsatisfactory diabetes compensation [9] | ||
'''Task:''' ''Determination of glycated hemoglobin'' (pdf) | '''Task:''' ''Determination of glycated hemoglobin'' (pdf) | ||
== | == Iron == | ||
'''Iron''' is one of the most important elements in the human body. The adult body contains more than 70 mmol (4.0-4.5 g) of iron. In women, this amount is lower than in men, which is attributed to blood loss during menses. | |||
{| class = wikitable | {| class = wikitable | ||
|+ | |+ Distribution of iron in the body | ||
! | ! Form !! Function !! Protein !! Amount in g | ||
|- | |- | ||
| rowspan=4| ''' | | rowspan=4| '''Active iron''' || rowspan=2| oxygen transport || hemoglobin || 2,5–3,0 | ||
|- | |- | ||
| | | myoglobin || 0,3 | ||
|- | |- | ||
| | | electron transfer || cytochrome, cytochrome oxidase || rowspan="2" | 0,2 | ||
|- | |- | ||
| | | decomposition of hydrogen peroxide || catalase, peroxidase | ||
|- | |- | ||
| colspan=2| ''' | | colspan=2| '''Storage of iron'''|| feritin, hemosiderin || 0,8–1,0 | ||
|- | |- | ||
| colspan=2| ''' | | colspan=2| '''Trasport of iron''' || transferin || 0,003 | ||
|} | |} | ||
=== | === Iron metabolism === | ||
The presence of iron is essential for cell function. As a part of heme it participates in the transport of oxygen and as a part of cytochromes it conditions the transfer of electrons in the respiratory chain. An undesirable effect of iron as a transient and highly reactive element is its participation in radical reactions, in which so-called reactive oxygen species are formed. These proceses can damage cell membranes, proteins and DNA. | |||
Iron is absorbed as Fe<sup>2+</sup> by active transport in the duodenum and upper jejunum in two ways: | |||
# porphyrin-bound Fe in the form of a stable lipophilic complex | |||
# Water-soluble Fe<sup>II+</sup> chelates | |||
Only a small part is absorbed in ionized form. | |||
The diet averages 10-50 mg of iron per day, but only 10-15% is absorbed. Heme (meat) compounds absorb better, non-heme Fe in the plant diet much worse. In addition, plants contain oxalates, phytates, tannins and other phenolic compounds which form insoluble or chelated complexes with Fe which are difficult to absorb. Ascorbic acid, on the other hand, improves iron absorption. | |||
After uptake by the intestinal mucosa, part of the iron is incorporated into the storage form - '''ferritin''' in intestinal cells. Part of the absorbed iron passes into the plasma, where it is transported in binding to '''transferrin'''. The protein '''ferroportin''' (it is also found in the membrane of macrophages and hepatocytes) plays an important role in the transfer of iron across the basolateral membrane of enterocytes. It is the main site of regulation of iron homeostasis in the body. A key regulatory factor is the '''hepcidin''' protein, which is synthesized in the liver. By binding to ferroportin, it inhibits the transport of iron from cells and thus contributes to its sequestration in them. Hepcidin levels increase with inflammation. Hepcidin is also partly responsible for anemia of chronic diseases. Mutations in the hepcidin gene lead to juvenile '''hemochromatosis type 2B.''' | |||
Plasma iron is captured by target tissue cells via the transferrin receptor and is either incorporated into heme or stored in ferritin. The use of the specific transport protein transferrin and the ferritin storage protein for iron storage represents protective mechanisms to prevent the toxic effects of redox active iron. | |||
During desquamation of dead mucosal cells, unused iron leaves the stool together with unabsorbed iron. | |||
=== Examination of iron metabolism === | |||
In practice, we commonly encounter diseases associated with changes in iron metabolism and utilization. Laboratory tests of iron metabolism include the following tests: | |||
* iron in serum | |||
* serum transferrin and iron binding capacity | |||
* serum ferritin | |||
* transferrin receptor | |||
These parameters are important diagnostic indicators for demonstrating a decrease or increase in iron stores even in stages that are not accompanied by significant clinical manifestations. | |||
==== | ==== Determination of iron in serum ==== | ||
[[Soubor:Princip stanovení železa v séru.jpg| thumb |300px|Princip stanovení železa v séru]] | [[Soubor:Princip stanovení železa v séru.jpg| thumb |300px|Princip stanovení železa v séru]] | ||
Pro stanovení železa v séru se používají kolorimetrické metody, atomová absorpční [[spektrofotometrie]] a další speciální techniky. Nejužívanější jsou fotometrické metody, založené na reakci železa s komplexotvornou látkou. Všechny postupy zahrnují následující kroky: | Pro stanovení železa v séru se používají kolorimetrické metody, atomová absorpční [[spektrofotometrie]] a další speciální techniky. Nejužívanější jsou fotometrické metody, založené na reakci železa s komplexotvornou látkou. Všechny postupy zahrnují následující kroky: |
Revision as of 18:33, 23 November 2021
This article was marked by its author as Under construction, but the last edit is older than 30 days. If you want to edit this page, please try to contact its author first (you fill find him in the history). Watch the discussion as well. If the author will not continue in work, remove the template Last update: Tuesday, 23 Nov 2021 at 6.33 pm. |
Hemoglobin is a red blood pigment that transports oxygen from the lungs to the tissues and transports CO2 and protons from peripheral tissues to the respiratory system.
The hemoglobin concentration in a healthy adult male is approximately 150 g / l, in an adult female about 140 g / l. One gram of hemoglobin can bind up to 1.34 ml of oxygen.[1]
Structure of hemoglobin
náhled|100px|Hemoglobin náhled|100px|Hem It is a tetrameric protein made up of four subunits. The two and two subunits are always identical. There are four types of polypeptide chains, physiologically occurring hemoglobin, α, β, γ, and δ, which differ in the number and sequence of amino acids. The tetramer consists of two α chains and two other types of chains that indicate the character of the whole hemoglobin molecule. In adults, hemoglobin A predominates, with two β chains (146 amino acids) involved in addition to two α chains (141 amino acids).
Each subunit includes a polypeptide chain to which one heme is covalently attached. The basis of the heme molecule is protoporphyrin, formed by 4 pyrrole nuclei connected by methenyl bridges with centrally bound iron. Heme iron is a total of six bonds - it is connected to the nitrogen atoms of the pyrrole nuclei by four coordination bonds. By another coordination valence, iron binds to the imidazole group of the amino acid histidine in the globin chain. The sixth valence Fe is for the oxygen molecule (O2).
Hemoglobin in the blood
Determination of hemoglobin in the blood is one of the most basic laboratory tests. Blood hemoglobin is the main criterion for assessing whether it is anemia. The term anemia is used when hemoglobin or erythrocytes fall below the lower limit of physiological levels. Anemia is a very common clinical finding. This is a condition that leads to a reduction in oxygen binding capacity and a consequent tissue respiratory disorder.
Causes of Anemia
Anemia occurs when erythropoiesis is unable to meet the requirements for new red blood cells. It develops as a result of blood loss or increased loss of red blood cells or insufficient red blood cell production. The following is a list of some specific causes of anemia:
- Anemia from increased blood loss:
- Acute blood loss.
- Chronic blood loss.
- Anemia due to increased erythrocyte breakdown (hemolytic conditions).
- Autoimmune hemolytic anemia (presence of antibodies against own erythrocytes).
- Erythrocyte membrane disorder (deviation in erythrocyte membrane composition).
- Hereditary erythrocyte enzyme defects (pyruvate kinase, glucose-6-phosphate dehydrogenase).
- Unstable hemoglobin - hemoglobinopathies (e.g. hemoglobin S in sickle cell disease).
- Anemia from decreased erythrocyte production:
- Lack of substances needed for erythropoiesis (iron deficiency, vitamin B12 deficiency, folic acid deficiency, erythropoietin deficiency - chronic renal diseases, lack of other substances such as vitamins B1, B6).
- Anemia due to chemical, physical and radiation damage.
- Anemia in chronic inflammatory, infectious and cancerous diseases.
Elevated hemoglobin levels may be a sign of dehydration or chronic decreased pulmonary ventilation. Rarely, it can be caused by some myeloproliferative conditions, such as polycythemia vera.
Principle of hemoglobin determination in blood
Oxidation of hemoglobin to methemoglobin:
HbFeII | + | [FeIII(CN)6]3− | → | HbFeIII | + | [FeII(CN)6]4− |
Hemoglobin | Methemoglobin |
Conversion of methemoglobin to cyanomethemoglobin:
HbFeIII | + | CN− | → | HbFeIIICN | |
Methemoglobin | Cyanomethemoglobin |
The photometric determination is based on the oxidation of ferrous iron in hemoglobin with potassium ferrocyanide to ferric iron. The resulting methemoglobin is converted to a very stable cyanomethemoglobin in a further reaction with potassium cyanide with a single broad absorption maximum in the visible region at 540 nm.
Assessment: The reference range for hemoglobin in the blood (B hemoglobin) for an adult male is 130-180 g / l and for a female 120-160 g / l.
Task: Determination of hemoglobin in the blood (pdf)
Hemoglobine in urine
Up to a million erythrocytes per day are excreted in the urine of completely healthy people. This very small amount cannot be demonstrated by conventional chemical tests. Occurrence of a larger number of erythrocytes (hematuria, erythrocyturia) or penetration of free hemoglobin, or muscle myoglobin, into definitive urine (hemoglobinuria or myoglobinuria) is almost always a pathological finding. We observe macroscopic hematuria with the naked eye; the urine is pinkish (comparable to water from washed meat) and hemoglobin can be detected spectroscopically in it. There is at least 1 g of hemoglobin per liter in the urine. In massive hemoglobinuria, the urine may have a colour of a dark beer (degradation of hemoglobin to hematin). Microscopic hematuria can only be detected biochemically.
Determination of hemoglobin in urine
Hemoglobin catalyzes, like peroxidase, the oxidation (dehydrogenation) of some substrates (eg benzidine derivatives) by hydrogen peroxide:
However, it is not an enzyme activity (catalysis is conditioned by heme iron) and therefore it is not lost even after heat denaturation. We are talking about pseudoperoxidase activity, which is used for sensitive but non-specific evidence of hemoglobin or trace amounts of blood. It is preferable to use a chromogenic substrate to monitor the reaction, i.e., a substance that provides a markedly colored product by dehydrogenation (often benzidine or its non-carcinogenic derivatives, aminophenazone, etc.).
The reagent zone of the diagnostic stripes contains a chromogen (eg tetramethylbenzidine) with stabilized hydrogen peroxide (eg cumene hydroperoxide). In the presence of free hemoglobin (hemoglobinuria), the indication zone turns uniformly blue. If erythrocytes (erythrocyturia) are present in the urine, intensely green-blue dots to spots form.
Hemoglobinuria can be encountered in intravascular hemolysis. Damage to the glomerular membrane (glomerular hematuria) and bleeding from any part of the urinary tract lead to more frequent erythrocyturia. It is often found in urinary tract infections, urolithiasis and urogenital tract tumors.
In addition to hemoglobin, myoglobin also provides a pseudoperoxidase response, which can be excreted in the urine during skeletal muscle breakdown (rhabdomyolysis, crush syndrome). The positivity of the test may also be due to peroxidases of leukocytes or certain bacteria, yeasts or fungi, which may occur in the urine, especially in urinary tract infections. To rule out the possibility of a false positive reaction due to cellular peroxidases, the reaction must be performed with boiled urine.
Contamination of the sampling vessel with strong oxidizing agents also causes a false positive reaction. On the other hand, the presence of strong reducing substances (eg ascorbic acid) can slow down or even stop the pseudoperoxidase reaction and thus cause false negative results.
Assesment: Determination of blood and hemoglobin in urine (pdf)
Hemoglobin in stool - occult bleeding
Demonstration of occult (hidden) bleeding is used to detect the early stages of colorectal cancer, when radical and effective treatment is possible. The examination consists of capturing traces of blood in the stool, using various methodological procedures:
- The methods use the pseudoperoxidase activities of hemoglobin. The patient must maintain a diet for 3 days before the examination, exclude uncooked meat, salami, bananas, tomatoes from the diet, and must not take drugs containing ascorbic acid or acetylsalicylic acid. The patient then takes samples from three consecutive stools and applies them to the test cards. The evaluation is performed in the laboratory, the principle is similar to the hemoPHAN diagnostic stripes.
- Other methods are based on the immunochemical detection of hemoglobin with an anti-human hemoglobin antibody. Immunochemical methods are more sensitive and specific, there is no need to follow a diet before the examination. Positive results must be verified by other diagnostic methods.
Assesment: Test for occult bleeding in the digestive tract (pdf)
Hemoglobin derivatives
Hemoglobin derivatives include the following types:
Oxyhemoglobin and deoxyhemoglobin
Oxygen-carrying hemoglobin is referred to as oxyhemoglobin (oxyHb). Each Hb molecule can bind 4 molecules of oxygen. After the release of oxygen, we speak of deoxyhemoglobin (deoxyHb). In both forms, iron is divalent because only FeII + -containing hemoglobin can reversibly bind and transport the oxygen molecule. Oxygenation of the hemoglobin molecule changes the electronic state of the FeII + -hem complex, which results in a change in the color of the dark red (typical of venous blood) to a bright red color (arterial blood). In the human body, about 98.5% [2] of oxygen is bound to hemoglobin.
Carbaminohemoglobin
Carbaminohemoglobin is a hemoglobin to which CO2 is bound. Carbon dioxide binds to the globin chain of hemoglobin. The binding of CO2 to hemoglobin reduces the affinity of hemoglobin for oxygen.
Methemoglobin
Methemoglobin (metHb; also hemiglobin or ferihemoglobin [1]) is characterized by the presence of ferric iron, which is formed by the oxidation of ferrous iron in hemoglobin [3]. Methemoglobin loses its ability to reversibly bind oxygen. In its place, FeIII+ binds a water molecule through the sixth coordination bond. The color of methemoglobin is chocolate brown. Methemoglobin is also present physiologically in small amounts in erythrocytes (about 1–3% of the total hemoglobin concentration [4]). This is mainly due to the effect of nitrite, which is formed from nitrates contained in food. The reverse reduction of methemoglobin to hemoglobin is mainly ensured by NADH-dependent cytochrome-b5 reductase (also methemoglobin reductase). A minor role is played by NADPH-dependent methemoglobin reductase, which is dependent on the supply of NADPH from the pentose cycle and on the presence of another electron transporter (eg flavin). [5] Non-enzymatic mechanisms include the action of glutathione and ascorbic acid.
Elevated blood levels of methemoglobin are called methemoglobinaemia. The causes are different:
- Hereditary methemoglobinemia is usually caused by a congenital defect of NADH-dependent methemoglobin reductase or the presence of abnormal hemoglobin M.
- Acquired methemoglobinemia is the most common form of methemoglobinemia. May be caused by oxidizing agents [6]:
- poisoning by certain substances (nitrobenzene, aniline and its derivatives - eg some dyes),
- by the action of some drugs (local anesthetics - benzocaine, then phenacetin, sulfonamides),
- increased content of nitrates and nitrites in water and food.
Newborns are particularly sensitive to the increased content of these substances due to the immaturity of the reduction systems and the increased proportion of fetal hemoglobin, which is more easily oxidized. Methemoglobinemia is manifested by cyanosis with a characteristic gray-brown tint and hypoxia.
Methemoglobin values | Symptoms |
---|---|
0–2 % | normal value |
< 10 % | cyanosis |
< 35 % | cyanosis and other symptoms (headache, dyspnoea) |
70 % | lethal concentration |
Part of the therapy of acquired methemoglobinemia is the administration of some reducing agents - methylene blue or ascorbic acid.
Carbonyl hemoglobin
Carbonylhemoglobin (COHb, carboxyhemoglobin) is formed by the binding of carbon monoxide to hemoglobin. The bond formed is 250-300 times stronger than the oxygen bond. Carbonyl hemoglobin cannot transport oxygen and cellular hypoxia develops due to the blood's reduced ability to carry oxygen. In excess oxygen, the binding of carbon monoxide to hemoglobin is reversible. Therefore, inhalation of O2 is most important in carbon monoxide poisoning.
COHb can also occur in small amounts in healthy people. For urban dwellers, values of around 2% are evident; for heavy smokers, COHb can rise to as much as 10% of total hemoglobin. Staying in an environment containing 0.1% CO for several minutes can increase the carbonyl hemoglobin concentration to 50%.
Carbon monoxide is formed during imperfect combustion of fuels, it is also contained in exhaust gases and in smoke during fires in closed rooms.
COHb values in % | Symptoms |
---|---|
10 | more exertion shortness of breath |
20–40 | headache, shortness of breath, fatigue, vomiting |
40–60 | hyperventilation, tachycardia, syncope, convulsions |
60–80 | coma, death |
Carbonyl hemoglobin is crimson red; even people with severe carbon monoxide poisoning tend to have "healthy" pink skin. Compared to hemoglobin, carbonyl hemoglobin is more resistant to chemical influences, it changes more slowly due to the action of various agents.
Spectrophotometry of hemoglobin derivatives
Hemoglobin and its derivatives have characteristic absorption spectra in the visible region of light, which are used for their analysis and rapid identification. Significant absorption maxima in the range of 400–430 nm, the so-called Soret band, are typical for all hemoproteins. Other absorption peaks are significantly lower. Oxyhemoglobin is characterized by two incompletely separated maxima in the region of 540 and 578 nm. Deoxyhemoglobin has a single absorption maximum at 555 nm. The main absorption maximum of methemoglobin is at 630 nm and the second faint peak at 500 nm depends on pH. By reacting methemoglobin with potassium cyanide, the maximum disappears at 630 nm, as cyanomethemoglobin is formed. The decrease in absorbance at 630 nm is proportional to the methemoglobin concentration. Cyanmethemoglobin has a broad absorption maximum at 540 nm, which is used to determine blood hemoglobin levels. The carbonyl hemoglobin spectrum is similar to that of oxyhemoglobin, but the position of the peaks is shifted toward lower wavelengths.
Hemoglobin derivative | Absorption maxima [nm] |
---|---|
Hemoglobin reduced | 431, 555 |
Oxyhemoglobin | 414, 540, 578 |
Methemoglobin | 404, 500, 630 |
Carbonylhemoglobin | 420, 538–540, 568–569 |
Cyanmethemoglobin | 421, 540 |
Determination of carbonyl hemoglobin spectrophotometry:
Determination of carbonyl hemoglobin in the blood is one of the basic toxicological examinations. It is an objective criterion in the assessment of acute and chronic carbon monoxide poisoning.
- Spectrophotometric evaluation. Carbonyl hemoglobin can be determined rapidly spectrophotometrically by subtracting the absorption maximum shift of the diluted blood from 586 nm [7]. The shift of the maximum in the spectrum depends on the ratio of COHb and O2Hb in the sample.
- Reactions with tannin. As a guide, carbonyl hemoglobin can be determined by reaction with tannin or Ajatin (about 10% COHb). Tannin forms a strawberry red precipitate in the presence of carbonyl hemoglobin. In the absence of carbonyl hemoglobin, the color of the precipitate is brownish gray.
- Acid-base balance analyzers. The analysis of the most toxicologically important hemoglobin derivatives COHb and metHb is also made possible by modern acid-base balance analyzers, which have a built-in photometric system for their measurement.
Task: Spectrophotometric examination of hemoglobin and its derivatives (pdf)
Task: Indicative determination of carbonyl hemoglobin (pdf)
Glycated hemoglobin HBA1
Glycated hemoglobin is formed by a non-enzymatic reaction between hemoglobin and blood glucose. Its creation is irreversible.
Glycated hemoglobin levels therefore reflect blood glucose levels throughout the life of the erythrocyte, i.e. about 120 days, and are used to assess the success of diabetes treatment / compensation in the 4-8 weeks prior to the examination. The form of the stable HBA1c fraction is most often determined.
Terminology
- Glycated hemoglobin - the sum of carbohydrate adducts at the N-terminus or ε amino groups of lysine in hemoglobin.
- HbA1 - the sum of various minor hemoglobin fractions (glycated), including HbA1c, HbA1a1 / a2, HbA1b1 / b2 / b3, HbA1d1 / d2 / d3 and HbA1e.
- HbA1c - glucose adduct of valine at the N-terminus of β-globin; corresponds to the so-called stable ketoamine (N- [1-deoxyfructosyl] hemoglobin).
Glycated hemoglobin can be determined by ion exchange chromatography followed by spectrophotometry.
Evaluation
The amount of glycated hemoglobin is expressed in % of total hemoglobin or now in mmol/mol according to the IFCC (International Federation of Clinical Chemistry).
Reference limits
- in healthy adults up to 39 mmol/mol, (2.8–4.0%) [8]
- In diabetics, HbA1c concentrations of up to 45 mmol/mol (4.5%) indicate excellent diabetes compensation, up to 60 mmol / mol (6.0%) of acceptable and higher values of unsatisfactory diabetes compensation [9]
Task: Determination of glycated hemoglobin (pdf)
Iron
Iron is one of the most important elements in the human body. The adult body contains more than 70 mmol (4.0-4.5 g) of iron. In women, this amount is lower than in men, which is attributed to blood loss during menses.
Form | Function | Protein | Amount in g |
---|---|---|---|
Active iron | oxygen transport | hemoglobin | 2,5–3,0 |
myoglobin | 0,3 | ||
electron transfer | cytochrome, cytochrome oxidase | 0,2 | |
decomposition of hydrogen peroxide | catalase, peroxidase | ||
Storage of iron | feritin, hemosiderin | 0,8–1,0 | |
Trasport of iron | transferin | 0,003 |
Iron metabolism
The presence of iron is essential for cell function. As a part of heme it participates in the transport of oxygen and as a part of cytochromes it conditions the transfer of electrons in the respiratory chain. An undesirable effect of iron as a transient and highly reactive element is its participation in radical reactions, in which so-called reactive oxygen species are formed. These proceses can damage cell membranes, proteins and DNA.
Iron is absorbed as Fe2+ by active transport in the duodenum and upper jejunum in two ways:
- porphyrin-bound Fe in the form of a stable lipophilic complex
- Water-soluble FeII+ chelates
Only a small part is absorbed in ionized form.
The diet averages 10-50 mg of iron per day, but only 10-15% is absorbed. Heme (meat) compounds absorb better, non-heme Fe in the plant diet much worse. In addition, plants contain oxalates, phytates, tannins and other phenolic compounds which form insoluble or chelated complexes with Fe which are difficult to absorb. Ascorbic acid, on the other hand, improves iron absorption.
After uptake by the intestinal mucosa, part of the iron is incorporated into the storage form - ferritin in intestinal cells. Part of the absorbed iron passes into the plasma, where it is transported in binding to transferrin. The protein ferroportin (it is also found in the membrane of macrophages and hepatocytes) plays an important role in the transfer of iron across the basolateral membrane of enterocytes. It is the main site of regulation of iron homeostasis in the body. A key regulatory factor is the hepcidin protein, which is synthesized in the liver. By binding to ferroportin, it inhibits the transport of iron from cells and thus contributes to its sequestration in them. Hepcidin levels increase with inflammation. Hepcidin is also partly responsible for anemia of chronic diseases. Mutations in the hepcidin gene lead to juvenile hemochromatosis type 2B.
Plasma iron is captured by target tissue cells via the transferrin receptor and is either incorporated into heme or stored in ferritin. The use of the specific transport protein transferrin and the ferritin storage protein for iron storage represents protective mechanisms to prevent the toxic effects of redox active iron.
During desquamation of dead mucosal cells, unused iron leaves the stool together with unabsorbed iron.
Examination of iron metabolism
In practice, we commonly encounter diseases associated with changes in iron metabolism and utilization. Laboratory tests of iron metabolism include the following tests:
- iron in serum
- serum transferrin and iron binding capacity
- serum ferritin
- transferrin receptor
These parameters are important diagnostic indicators for demonstrating a decrease or increase in iron stores even in stages that are not accompanied by significant clinical manifestations.
Determination of iron in serum
thumb |300px|Princip stanovení železa v séru Pro stanovení železa v séru se používají kolorimetrické metody, atomová absorpční spektrofotometrie a další speciální techniky. Nejužívanější jsou fotometrické metody, založené na reakci železa s komplexotvornou látkou. Všechny postupy zahrnují následující kroky: thumb |150px|Ferrozin
- Uvolnění Fe3+ z vazby na transferin pomocí kyselin nebo tenzidů (např. HCl).
- Redukce Fe3+ na Fe2+, která je nezbytná pro reakci s komplexotvorným činidlem. K redukci se používá např. kyselina askorbová.
- Reakce Fe2+ s komplexotvorným činidlem obsahujícím reaktivní skupiny –N=C–C=N– za vzniku barevného komplexu. Ionty kovu vytvářejí cheláty s dvěma atomy dusíku. V současnosti se využívají především dvě komplexotvorné látky – bathofenentrolin a ferrozin (3-(2-pyridyl)-5,6-bis(4-sulfofenyl)-1,2,4-triazin – PST, chráněný název FerroZine®), který má vyšší absorpční koeficient a je lépe rozpustný ve vodě.
- Hodnocení
- Koncentrace sérového železa podléhají cirkadiánnímu rytmu a jsou ovlivněny i dalšími faktory. To omezuje diagnostický význam tohoto parametru. Je špatným ukazatelem tkáňových zásob železa a je nutné ho vždy posuzovat v kombinaci se sérovým transferinem a vazebnou kapacitou pro železo. Snížené koncentrace doprovázejí nedostatek železa, způsobený např. velkými nebo opakovanými krevními ztrátami, nedostatečným příjmem železa potravou nebo narušenou absorpcí. Nález není specifický, neboť se sníženými hladinami se setkáváme rovněž u akutní infekce nebo chronických zánětlivých onemocněních (přesun železa do tkání). Vysoké hladiny železa se vyskytují u hemochromatózy (viz níže), při předávkování nebo intoxikaci železem, při zvýšeném rozpadu erytrocytů a u některých jaterních onemocnění.
- Referenční hodnoty
- muži: 9–29 μmol/l
- ženy: 7–28 μmol/l
Sérový transferin a vazebná kapacita pro železo
Železo je transportováno krví ve vazbě na specifický protein s β1-elektroforetickou pohyblivostí – transferin, který je syntetizován v játrech. Rychlost jeho tvorby je nepřímo úměrná zásobám železa v organismu; zvyšuje se při nedostatku železa a při nadbytku klesá. Biologická funkce transferinu spočívá ve schopnosti snadno tvořit netoxické komplexy se železem a přenášet Fe absorbované sliznicí tenkého střeva do kostní dřeně nebo do zásobních forem (feritinu nebo hemosiderinu). Každá molekula transferinu váže dva atomy Fe3+ (1 g transferinu váže 25,2 μmol železa). Transferin může být stanoven přímo pomocí imunochemických metod nebo nepřímo jako schopnost transferinu vázat železo – tzv. vazebná kapacita pro železo. Celková vazebná kapacita pro železo (TIBC – total iron binding capacity) je množství železa, které je transferin schopen vázat v případě, že všechna vazebná místa jsou obsazena. Obvykle je železem nasycena pouze 1/3 transferinu – vázaná kapacita. Volný transferin bez navázaného železa představuje volnou vazebnou kapacitu (2/3 transferinu), která je k dispozici pro transport železa při zvýšených požadavcích.
Přepočet mezi koncentrací transferinu a celkovou vazebnou kapacitou:
- Celková vazebná kapacita [μmol/l] = transferin [g/l] · 25,2.
Referenční rozmezí pro koncentraci transferinu v séru (S-transferin) je 2,0–3,6 g/l a pro celkovou vazebnou kapacitu je 50–70 μmol/l.
Saturace transferinu
Z hodnot koncentrace železa a transferinu můžeme vypočítat saturaci transferinu (TfS), která je definována jako poměr sérové koncentrace železa k celkové vazebné kapacitě transferinu pro železo. Jedná se o citlivý parametr pro odhalení latentního nedostatku železa.
- Hodnocení saturace transferinu
- fyziologické hodnoty: 25–50 %
- snížení saturace při nedostatku železa: < 15 %
- zvýšení saturace při nadbytku železa: > 50 %
Feritin a hemosiderin
thumb |300px|Schema struktury feritinu Feritin je nejdůležitější zásobní protein pro železo. Molekula feritinu je přizpůsobena vázat velké množství Fe3+ v rozpustné a netoxické formě pro organismus. Feritin je tvořen vnějším proteinovým obalem z 24 podjednotek – apoferitinem (Mr 440 000), ohraničujícím dutinu, ve které může být soustředěno až 4500 atomů železa ve formě oxyhydroxidu železitého (FeO·OH)n v mikrokrystalické podobě s fosfáty (FeO·OPO3H2). Vstup a výstup atomů železa umožňují póry mezi jednotlivými podjednotkami obalu molekuly feritinu. Normálně je jeho kapacita využita asi z 20 %. Ukládá se do buněk v játrech, slezině a střevní sliznici.
V krevním séru se feritin nachází ve velmi nízké koncentraci. Sérové koncentrace feritinu jsou měřítkem zásob železa v organismu. Nízké koncentrace indikují vyčerpání celkové tělesné rezervy železa a slouží k časnému odhalení anémie z nedostatku železa ještě v prelatentní fázi. Zvýšené koncentrace feritinu jsou doprovodným jevem vysokých tkáňových zásob železa. Dále se s nimi setkáváme u mnohých pacientů s onemocněním jater, některými maligními nádory (nádorový marker) nebo zánětlivými onemocněními (pozitivní reaktant akutní fáze).
Referenční rozmezí pro koncentraci feritinu v séru (S-feritin) je pro muže 30–300 μg/l a pro ženy 20–120 μg/l.
Hemosiderin je dalším zásobním proteinem pro železo. Vzniká agregací denaturovaného feritinu s dalšími komponentami. Vytváří partikule o velikosti 1 až 2 μm, které jsou při použití barvení na železo viditelné ve světelném mikroskopu. Hemosiderin obsahuje větší množství železa než feritin, ale vzhledem ke špatné rozpustnosti ve vodě je obtížně dostupné. Tvoří se za situace, kdy množství železa v organismu převýší skladovací kapacitu feritinu.
Transferinový receptor
thumb |300px|Transferinový receptor Železo transportované krví transferinem je zachycováno buňkami prostřednictvím specifického transferinového receptoru (TfR). V určitém stádiu vývoje se nachází na povrchu všech buněk, nejvíce je však exprimován na povrchu prekursorů buněk červené řady v kostní dřeni. TfR je transmembránový protein, který je tvořen dvěma identickými podjednotkami, spojenými disulfidovou vazbou. Oddělením extracelulárních domén receptoru se do cirkulace uvolňuje tzv. solubilní (rozpustná) frakce transferinového receptoru (sTfR), který může být v podobě dimeru nebo monomeru. Buňky reagují na snížení zásob železa syntézou zvýšeného množství transferinových receptorů.
Zvýšení sTfR je spolehlivým ukazatelem nedostatku železa pro krvetvorbu. Se zvýšenými hladinami sTfR se setkáváme u anemií z nedostatku železa nebo u hemolytických anemií. Cenné je stanovení sTfR u anemických pacientů, u nichž je zvýšen feritin z důvodů reakce akutní fáze. Stanovení koncentrace sTfR je možno využít i u pacientů s transplantovanou kostní dření pro sledování průběhu erytropoézy.
Ke stanovení se používají imunochemické metody.
Poruchy metabolismu železa
__
Nedostatek železa (sideropenie)
Nedostatek železa v organismu bývá zpravidla způsoben jeho nedostatečným vstřebáváním ze střeva nebo chronickými ztrátami krve. Může vyústit v sideropenickou anémii (hypochromní mikrocytární anémie), která patří mezi nejčastější hematologická onemocnění. Anémie je však zpravidla pozdní příznak postupně se vyvíjející sideropenie. V krevním obraze se projeví až po téměř úplném vymizení železa. Proto je potřebné odhalit nedostatek železa v časném stádiu, které ještě není doprovázeno anémií.
Na základě stanovení základních parametrů metabolismu železa rozlišujeme tři stupně nedostatku:
- Prelatentní nedostatek železa je označení pro stav, kdy dochází k postupnému poklesu zásob, ale ještě není ovlivněna dodávka železa do erytroblastů kostní dřeně. Asi u poloviny nemocných jsou hladiny feritinu v séru snížené pod 12 μg/l.
- Při latentním nedostatku železa jsou jeho zásoby v podstatě vyčerpány. Feritin je snížen pod dolní hranici normy a je v tomto stádiu již doprovázen i snížením hladiny železa v séru a sníženou dodávkou do erytroblastů kostní dřeně. Zvyšuje se vazebná kapacita pro železo. Citlivým ukazatelem latentního nedostatku železa je pokles saturace transferinu pod 15 %. Nerozvíjí se však ještě anémie.
- Při manifestním nedostatku železa dochází k rozvoji anémie s poklesem hodnot hemoglobinu pod dolní hranici normy. U anémie z nedostatku železa je typický nález nízkého sérového železa a feritinu, je zvýšená koncentrace transferinu (vazebná kapacita pro železo). U hemolytických anémií nebo při nadbytku železa je naopak sérové železo zvýšené, současně je snížená celková vazebná kapacita pro železo.
Prelatentní nedostatek železa | Latentní nedostatek železa | Manifestní nedostatek železa |
---|---|---|
snižování zásobního železa – pokles feritinu | nedostatek zásobního železa – pokles feritinu | nedostatek zásobního železa – pokles feritinu |
snížení sérového železa | snížení sérového železa | |
pokles saturace transferinu pod 15 % | pokles transferinu pod 10 % | |
zvýšení celkové vazebné kapacity pro železo | zvýšení celkové vazebné kapacity pro železo | |
zvýšení sTfR | zvýšení sTfR | |
snížení koncentrace hemoglobinu – anémie |
Nadbytek železa
Organismus není vybaven exkreční cestou pro železo, a proto se za určitých okolností může přebytečné železo hromadit ve tkáních. Včasná diagnostika může zabránit poškození tkání nadbytkem železa. Přetížení železem se rozvíjí většinou velmi pomalu. Rozlišujeme 3 stádia:
- Ve stádiu prelatentního nadbytku železa se zvyšuje jeho obsah v orgánech, ale bez překročení jejich zásobní kapacity.
- V období latentního stádia přetížení železem je překročena zásobní kapacita buněk, ale ještě není poškozena funkce orgánů, zvyšuje se hladina feritinu i hladina železa v séru a stoupá saturace transferinu nad 55 %.
- Ve fázi manifestního nadbytku železa jsou již poškozeny některé orgány.
Prelatentní nadbytek železa | Latentní nadbytek železa | Manifestní nadbytek železa |
---|---|---|
zvyšování zásob železa – zvýšení feritinu | zvyšování zásob železa – zvýšení feritinu nad 300 μg/l | zvyšování zásob železa – zvýšení feritinu (při těžkém postižení nad 2000 μg/l) |
zvýšení železa v séru | výrazné zvýšení železa v séru | |
zvýšení saturace transferinu nad 55 % | zvýšení saturace transferinu (při těžkém postižení může převýšit 90 %) |
Hemochromatóza
Hromadění železa v tkáních souvisí s onemocněním, které označujeme jako hemochromatóza.
- Primární hemochromatóza je dědičné onemocnění způsobené zvýšenou resorpcí železa ze střeva. Přebytečné železo se ukládá v parenchymatózních orgánech jako jsou játra, srdce, pankreas, nadledviny. V postižených orgánech působí toxicky a narušuje jejich funkci tím, že může katalyzovat chronické reakce vedoucí k tvorbě volných radikálů. Hlavními klinickými projevy jsou hyperpigmentace kůže, hepatosplenomegalie a diabetes mellitus.
- Sekundární hemochromatóza se může vyvinout jako následek např. opakovaných transfúzí, nadbytečného příjmu přípravků obsahujících železo nebo hemolytické anémie. V biochemickém obraze nalézáme zvyšující se hladiny feritinu a železa v séru, stoupá saturace transferinu při jeho současném poklesu.
Otrava železem
Kategorie:Vložené články Kategorie:Biochemie Kategorie:Fyziologie Kategorie:Patofyziologie Kategorie:Patobiochemie Kategorie:ToxikologieŽelezo
Úkol: Stanovení Fe v séru kolorimetrickou metodou (pdf)