Colorectal carcinoma (PGS): Difference between revisions
Feedback

From WikiLectures

(Ver 0.1 - Unfinished)
 
(→‎Patologie: Version 0.2 - still not finished)
Line 14: Line 14:
One of the oldest surviving descriptions from medieval Europe, which certainly captures colorectal cancer, including a description of the tumor itself and its manifestations and prognosis, was left by the English surgeon John of Arden in the 14th century. Among other things, the author mentions that he saw many people who died of the disease. However, he had never seen or cured anyone of the disease.<ref name=":1" />
One of the oldest surviving descriptions from medieval Europe, which certainly captures colorectal cancer, including a description of the tumor itself and its manifestations and prognosis, was left by the English surgeon John of Arden in the 14th century. Among other things, the author mentions that he saw many people who died of the disease. However, he had never seen or cured anyone of the disease.<ref name=":1" />


The first therapy with the hope of therapeutic success was a radical surgical resection of the affected section of the intestine. The first successful resection of the rectal tumor was performed in 1829 by J. Lisfranc (1790-1847). Rectal cancer surgery became more widespread at the beginning of the 20th century, mainly due to a significant reduction in postoperative mortality. Even in a small proportion of patients who underwent the procedure, about 90% of patients relapsed. With the gradual improvement of technique and scope of performance, perioperative mortality was already 6% in the 1930s and five-year survival increased to 65%.<ref name=":1" /> In 1954, W. H. Cole published a work demonstrating that tumor cells may appear in the portal blood of a operated patient during surgery; this finding gradually led to the introduction of the "no touch" concept in colon and rectal surgery.<ref>KALA, Z., P. KYSELA a L. OSTŘÍŽKOVÁ, et al. Chirurgická a miniinvazivní léčba kolorektálního karcinomu. ''Onkologie'' [online]''. ''2011, vol. 5, no. 5, s. 270-272, dostupné také z <<nowiki>http://www.onkologiecs.cz/pdfs/xon/2011/05/07.pdf</nowiki>>. ISSN 1803-5345.</ref> Work safely demonstrating that extending performance to mesorectal fat improves patient survival was not published until R. J. Heald and J. D Ryall.<ref name=":1" />
The first therapy with the hope of therapeutic success was a radical surgical resection of the affected section of the intestine. The first successful resection of the rectal tumor was performed in 1829 by J. Lisfranc (1790-1847). Rectal cancer surgery became more widespread at the beginning of the 20th century, mainly due to a significant reduction in postoperative mortality. Even in a small proportion of patients who underwent the procedure, about 90% of patients relapsed. With the gradual improvement of technique and scope of performance, perioperative mortality was already 6% in the 1930s and five-year survival increased to 65%.<ref name=":1" /> In 1954, W. H. Cole published a work demonstrating that tumor cells may appear in the portal blood of a operated patient during surgery; this finding gradually led to the introduction of the "no touch" concept in colon and rectal surgery.<ref name=":4">KALA, Z., P. KYSELA a L. OSTŘÍŽKOVÁ, et al. Chirurgická a miniinvazivní léčba kolorektálního karcinomu. ''Onkologie'' [online]''. ''2011, vol. 5, no. 5, s. 270-272, dostupné také z <<nowiki>http://www.onkologiecs.cz/pdfs/xon/2011/05/07.pdf</nowiki>>. ISSN 1803-5345.</ref> Work safely demonstrating that extending performance to mesorectal fat improves patient survival was not published until R. J. Heald and J. D Ryall.<ref name=":1" />


The discovery of both X-rays and radioactivity, and in particular the discovery that ionizing radiation inhibits cell growth, led to the use of these modalities as supportive therapies as early as the beginning of the 20th century. However, the original methods of application did not significantly affect the survival of patients.<ref name=":1" />
The discovery of both X-rays and radioactivity, and in particular the discovery that ionizing radiation inhibits cell growth, led to the use of these modalities as supportive therapies as early as the beginning of the 20th century. However, the original methods of application did not significantly affect the survival of patients.<ref name=":1" />
Line 72: Line 72:
* [[juvenile polyposis]].
* [[juvenile polyposis]].


==Patologie==
==Pathology==
===Molekulární patologie===
===Molcular pathology===
Z molekulárního hlediska představuje kolorektální karcinom skupinu několika různých onemocnění, u kterých dochází k jistému překryvu. K malignímu zvratu totiž může dojít v důsledku několika sekvencí mutací. Na základě molekulární charakteristiky lze rozlišit pět typů kolorektálního karcinomu. Jednotlivé typy se rozlišují podle hypermethylace CpG ostrůvků (CIMP), mikrosatelitové nestability (MSI, MSS = stabilní), chromozomálních aberací a charakteristické mutace:<ref name="Jass2007">{{Citace
From a molecular point of view, colorectal cancer is a group of several different diseases in which there is some overlap. This is because a malignant reversal can occur due to several mutation sequences. Five types of colorectal cancer can be distinguished based on molecular characteristics. Individual types differ according to CpG islet hypermethylation (CIMP), microsatellite instability (MSI, MSS = stable), chromosomal aberrations and characteristic mutations:<ref>JASS, J.R.. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. ''Histopathology.. ''2007, vol. 50, no. 1, s. 113-30, ISSN 0309-0167. </ref>
  | typ = článek
 
  | příjmení1 = Jass
* '''Type 1''' CIMP-H, MSI-H, [[BRAF]] mutations, chromosomes stable. It accounts for about 12% of colorectal cancers, also referred to as sporadic MSI-H colorectal cancer. It arises on the basis of [[serous lesions]].
  | jméno1 = J.R.
* '''Type 2''' CIMP-H, MSI-L or MSS, BRAF mutations, chromosomes stable. It represents about 8% of colorectal cancers, it arises on the basis of serial lesions.
  | článek = Classification of colorectal cancer based on correlation of clinical, morphological and molecular features
* '''Type 3''' CIMP-L, MSI-L or MSS, [[KRAS]] mutations, chromosomal instability. It represents about 20% of colorectal cancers. It arises on the basis of serous lesions and classic [[adenomas]].
  | časopis = Histopathology.
* '''Type 4''' CIMP-negative, MSS, chromosomes unstable. It arises on the basis of a congenital or acquired mutation of [[Antigen presenting cells|APC]] or [[MUTYH]], it arises from classical adenomas. It represents about 57% of colorectal cancers.
  | rok = 2007
* '''Type 5''' CIMP-negative, MSI-H, chromosomes are stable. It is caused by [[Lynch syndrome]], sometimes referred to as familial MSI-H cancer. It represents about 3% of colorectal cancers.
  | číslo = 1
 
  | svazek = 50
In sporadic colorectal cancers, three major areas of change in cell biology can be distinguished, and there are three ways to divide them:<ref name=":5">In sporadic colorectal cancers, three major areas of change in cell biology can be distinguished, and there are three ways to speak:</ref>
  | strany = 113-30
 
  | issn = 0309-0167
# chromosomal instability pathway,
}}</ref>
# microsatellite instability pathway,
*'''Typ 1''' CIMP-H, MSI-H, [[wikiskripta:BRAF|BRAF]] mutace, chromozomy stabilní. Představuje asi 12 % kolorektálních karcinomů, označuje se též jako sporadický MSI-H kolorektální karcinom. Vzniká na podkladě [[wikiskripta:Serátní_léze|serátních lézí]].
# hypermethylation of CpG isles pathway.
*'''Typ 2''' CIMP-H, MSI-L nebo MSS, [[wikiskripta:BRAF|BRAF]] mutace, chromozomy stabilní. Představuje asi 8 % kolorektálních karcinomů, vzniká na podkladě [[wikiskripta:Serátní_léze|serátních lézí]].
 
*'''Typ 3''' CIMP-L, MSI-L nebo MSS, [[wikiskripta:KRAS|KRAS]] mutace, chromozomální nestabilita. Představuje asi 20 % kolorektálních karcinomů. Vzniká na podkladě [[wikiskripta:Serátní_léze|serátních lézí]] i klasických [[wikiskripta:Kolorektální_adenom|adenomů]].
====Chromosomal instability pathway====
*'''Typ 4''' CIMP-negativní, MSS, chromozomy nestabilní. Vzniká na podkladě vrozené či získané mutace [[wikiskripta:APC|APC]] nebo [[wikiskripta:MUTYH|MUTYH]], vzniká z klasických [[wikiskripta:Kolorektální_adenom|adenomů]]. Představuje asi 57 % kolorektálních karcinomů.
*'''Typ 5''' CIMP-negativní, MSI-H, chromozomy jsou stabilní. Vzniká na podkladě [[wikiskripta:Lynchův_syndrom|Lynchova syndromu]], někdy se označuje jako familiární MSI-H karcinom. Představuje asi 3 % kolorektálních karcinomů.
U sporadických kolorektálních karcinomů lze vyčlenit tři velké okruhy změn v biologii buňky, lze hovořit o třech cestách:<ref name="Al-Sohaily2012">{{Citace
  | typ = článek
  | příjmení1 = Al-Sohaily
  | jméno1 = S.
  | příjmení2 = Biankin
  | jméno2 = A.
  | příjmení3 = Leong
  | jméno3 = R.
  | kolektiv = ano
  | článek = Molecular pathways in colorectal cancer
  | časopis = J Gastroenterol Hepatol.
  | rok = 2012
  | číslo = 9
  | svazek = 27
  | strany = 1423-31
  | issn = 1440-1746
}}</ref>
#cesta chromozomální nestability,
#cesta mikrosatelitové nestability,
#cesta hypermethylace CpG ostrůvků.
====Cesta chromozomální nestability====
Chromozomální nestabilita je nejčastější příčina genové nestability kolorektálních karcinomů, lze prokázat u 65–70 % všech případů. Zahrnuje širokou změnu chromozomálních změn, jejichž důsledkem může být jak amplifikace některých genů tak i ztráta heterozygozity jiných genů. Nejčastěji se vyskytují následující změny v následujících lokalizacích:
Chromozomální nestabilita je nejčastější příčina genové nestability kolorektálních karcinomů, lze prokázat u 65–70 % všech případů. Zahrnuje širokou změnu chromozomálních změn, jejichž důsledkem může být jak amplifikace některých genů tak i ztráta heterozygozity jiných genů. Nejčastěji se vyskytují následující změny v následujících lokalizacích:
*Rozsáhlý zisk: 7, 8q, 13q, 20, X.
 
*Rozsáhlá ztráta: 1, 4, 5, 8p, 14q, 15q, 17p, 18, 20p, 22q.
* Extensive gain: 7, 8q, 13q, 20, X.
*Fokální zisk/ztráta v oblasti genů: VEGF, MYC, MET, LYN, PTEN.
* Extensive loss: 1, 4, 5, 8p, 14q, 15q, 17p, 18, 20p, 22q.
*Četné ztráty alel: 1, 5, 8, 17, 18.
* Focal gain / loss in the field of genes: VEGF, MYC, MET, LYN, PTEN.
*Ztráta celého chromozomu: 18.
* Numerous allele losses: 1, 5, 8, 17, 18.
Nejvýznamnější molekulární změny na úrovni jednoho genu jsou mutace APC, MCC a K-ras, na úrovni rozsáhlejších regionů ztráza na 5q, 8p, 17p a 18q.<ref name="Al-Sohaily2012" />
* Whole chromosome loss: 18.
 
The most significant molecular changes at the single gene level are the APC, MCC and K-ras mutations, at the level of the larger regions the cleats at 5q, 8p, 17p and 18q.<ref name=":5" />
;APC
;APC
{{Podrobnosti|APC (gen)}}APC je tumor-supresorový gen, jehož vrozená mutace je zodpovědná za většinu případů familiární adenomatózní polypózy. Produktem genu je multifunkční 310&nbsp;kDa protein podílející se na homeostáze epitelií zejména tím, že reguluje degeneraci cytoplasmatického β-cateninu a tím je klíčovou součástí [[wikiskripta:Wnt_kaskáda|signalizační kaskády wnt]]. APC se dále podílí na řízení buněčného cyklu a na stabilizaci mikrotubulů.
APC is a tumor suppressor gene whose innate mutation is responsible for most cases of familial adenomatous polyposis. The product of the gene is a multifunctional 310 kDa protein involved in epithelial homeostasis mainly by regulating the degeneration of cytoplasmic β-catenin and thus a key part of the [[wnt signaling cascade]]. APC is also involved in cell cycle control and microtubule stabilization.
;MCC
;MCC
{{Podrobnosti|MCC}}MCC je gen, jehož produkt se podílí na zástavě buněčného cyklu při poškození DNA a zřejmě zasahuje i do Wnt signalizační kaskády. U kolorektálních karcinomů bývá často utlumena jeho exprese cestou hypermethylace promotoru, přímé mutace nejsou obvyklé.
MCC is a gene whose product is involved in cell cycle arrest in DNA damage and apparently interferes with the Wnt signaling cascade. In colorectal cancers, its expression is often suppressed by promoter hypermethylation, direct mutations are not common.
;TP53
;TP53
{{Podrobnosti|p53}}TP53 je tumor-supresorový gen, jehož produkt, p53, je transkripční faktor hrající centrální roli v regulaci progrese buněčným cyklem v závislosti na detekci poškození DNA. Mutace genu TP53 je poměrně charakteristickou událostí v pozdní tumorgenezi kolorektálního karcinomu.
TP53 is a tumor suppressor gene whose product, [[p53]], is a transcription factor that plays a central role in regulating cell cycle progression depending on the detection of DNA damage. Mutation of the TP53 gene is a relatively characteristic event in the late tumorigenesis of colorectal cancer.
;K-ras
;K-ras
{{Podrobnosti|K-ras}}K-ras je onkogen, jehož produktem je membránový protein s GTPázovou aktivitou podílející se na signalizaci v řadě signalizačních kaskád. Mutace vede k trvalé aktivaci, která následně vede ke zvýšení transktipční aktivity řady genů, zejm. BCL-2, H2AFZ, RAP1B, TBX19, E2F4 a MMP1. Zvýšenou aktivitou K-ras jsou tak postiženy četné dráhy regulující buněčný růst, proliferaci, apoptózu, organizaci cytoskeletu a buněčnou motilitu. Předpokládá se, že mutace K-ras hraje zásadní roli v přechodu od adenomu ke karcinomu.
K-ras is an oncogene whose product is a membrane protein with GTPase activity involved in signaling in a number of signaling cascades. The mutation leads to a permanent activation, which in turn leads to an increase in the transcriptional activity of a number of genes, in particular BCL-2, H2AFZ, RAP1B, TBX19, E2F4 and MMP1. Numerous pathways regulating cell growth, proliferation, apoptosis, cytoskeletal organization, and cell motility are thus affected by increased K-ras activity. The K-ras mutation is thought to play a crucial role in the transition from adenoma to cancer.
;Ztráta 5q
;Loss of 5q
Ztráta na 5q se objevuje u 20–50 % sporadických kolorektálních karcinomů. V této oblasti se nacházejí zejména geny APC a MCC.
Loss of 5q occurs in 20-50% of sporadic colorectal cancers. The APC and MCC genes are mainly found in this area.
;Ztráta na 8p
;Loss at 8p
Ztráta na 8p se objevuje u zhruba 50 % kolorektálních karcinomů. Průkaz ztráty je obvyklejší v pokročilém stádiu, v časnějších stádiích je tato aberace méně obvyklá. Ztráta v oblasti 8p zvyšuje metastatický potenciál kolorektálního karcinomu. Kandidátní geny se nacházejí zejm. v oblastech 8p21 a 8p22.
Loss at 8p occurs in approximately 50% of colorectal cancers. Proof of loss is more common in the advanced stage, this aberration is less common in the earlier stages. Loss in the 8p region increases the metastatic potential of colorectal cancer. Candidate genes are found mainly in the 8p21 and 8p22 regions.
;Ztráta na 17p
;Loss at 17p
Ztráty v oblasti 17p se objevují u 75 % kolorektálních karcinomů, nebývají však u adenomů. Tato oblast obsahuje gen p53.
Losses in the 17p region occur in 75% of colorectal cancers, but do not occur in adenomas. This region contains the p53 gene.
;Ztráta na 18q
;Loss at 18q
Dlouhé raménko chromozomu 18 obsahuje řadu tumor-supresorových genů i genů podílejících se na řízení buněčné adheze a migrace.
The long arm of chromosome 18 contains a number of tumor suppressor genes as well as genes involved in the control of cell adhesion and migration.
====Cesta mikrosatelitové nestability====
====Microsatellite instability pathway====
[[wikiskripta:Mikrosatelit|Mikrosatelit]]y jsou krátké repetitivní sekvence vyskytující se napříč celým genomem. Jejich nestabilita je "makroskopickým" projevem poruchy systému "mismatch repair". Nestabilita mikrosatelitů se na úrovni transkripce projevuje posunem čtecího rámce. Karcinogeneze spojená s nestabilitou mikrosatelitů je asociována s mutací řady genů "mismatch repair systému": MSH2, MLH1, MSH6, PMS2, MSH3, PMS1 a Exol; zárodečné mutace některých těchto genů jsou příčinou [[wikiskripta:Lynchův_syndrom|Lynchova syndromu]].
[[Microsatellites]] are short repetitive sequences that occur throughout the genome. Their instability is a "macroscopic" manifestation of a "mismatch repair" system failure. At the transcriptional level, microsatellite instability is manifested by a frameshift. Carcinogenesis associated with microsatellite instability is associated with mutations in a number of mismatch repair system genes: MSH2, MLH1, MSH6, PMS2, MSH3, PMS1 and Exol; germline mutations in some of these genes cause [[Lynch syndrome]].
 
Since 1997, five loci have been recommended for microsatellite instability analysis: the mononucleotide repetitive sequences BAT25 and BAT26 and the dinucleotide repetitive sequences D5S346, D2S123 and D17S250. According to the evidence of instability, there are three phenotypes of microsatellite instability:
 
* MSI-high (MSI-H) - instability in at least two of these loci,
* MSI-low (MSI-L) - instability in just one locus,
* MSS - all five tested loci are stable.


K analýze nestability mikrosatelitů se od roku 1997 doporučuje používat pět lokusů: mononukleotidové repetitivní sekvence BAT25 a BAT26 a dinukleotidové repetitivní sekvence D5S346, D2S123 a D17S250. Podle průkazu nestability se rozlišují tři fenotypy mikrosatelitové instability:
Alternatively, BAT25, BAT26, NR21, NR24 and NR27 loci are used, the evaluation of which appears to be more consistent with mismatch reapirus gene disorders.
*MSI-high (MSI-H) – nestabilita nejméně ve dvou těchto lokusech,
*MSI-low (MSI-L) – nestabilita právě v jednom lokusu,
*MSS – všech pět testovaných lokusů je stabilních.
Alternativně se používají lokusy BAT25, BAT26, NR21, NR24 a NR27, jejichž hodnocení má zřejmě lepší shodu s poruchami genů mismatch reapiru.


Další možností molekulárního hodnocení je analýza nestability vybraných tetranukleotidových repetitivních sekvencí. Fenotyp se zvýšenou nestabilitou se označuje EMAST, odpovídá supresi exprese genu MSH3.
Another possibility for molecular evaluation is the analysis of the instability of selected tetranucleotide repetitive sequences. The phenotype with increased instability is called EMAST, which corresponds to the suppression of MSH3 gene expression.


MSI-H nádory bývají často diploidní, ztráta heterozygozity se objevuje méně často, méně obvyklé jsou i mutace p53 a K-ras. Ve sporadických MSI-H tumorech je obvyklá mutace V600E genu BRAF. U tumorů s MSI je velmi častá inaktivující mutace v genu pro receptor TGFβRII (gen TGFBR2); tato inaktivace vede k eliminaci antiproliferační signalizace cytokinem [[wikiskripta:TGF_beta|TGF-β]].<ref name="Al-Sohaily2012" /> Mutace inaktivující antiproliferační kaskádu počínající receptorem TGFβRII jsou pokládány za podstatný krok od adenomu k high-grade dysplazii resp. ke karcinomu.<ref name="Markowitz2009">{{Citace
MSI-H tumors are often diploid, loss of heterozygosity occurs less frequently, and p53 and K-ras mutations are less common. The V600E mutation of the BRAF gene is common in sporadic MSI-H tumors. Inactivating mutations in the TGFβRII receptor gene (TGFBR2 gene) are very common in tumors with MSI; this inactivation leads to the elimination of antiproliferative signaling by the cytokine [[TGF-β]].<ref name=":5" /> Mutations inactivating the antiproliferative cascade beginning with the TGFβRII receptor are considered to be a significant step from adenoma to high-grade dysplasia resp. to cancer.<ref name=":6">MARKOWITZ, S.D. a M.M. BERTAGNOLLI. Molecular origins of cancer: Molecular basis of colorectal cancer. ''N Engl J Med'' [online]''. ''2009, vol. 361, no. 25, s. 2449-60, dostupné také z <<nowiki>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843693/?tool=pubmed</nowiki>>. ISSN 1533-4406. </ref>
  | typ = článek
====Hypermethylation of CpG isles pathway====
  | příjmení1 = Markowitz
A characteristic feature of this pathway are [[epigenetic]] changes, specifically cytosine hypermethylation in CpG sequences. Hypermethylation in the promoter regions of tumor suppressor genes is pathogenetic, which induces a decrease in their expression. Hypermethylation usually occurs in the promoter sequences of the APC, MCC, MLH1 and MGMT genes. It should be noted that it is not yet clear what is the cause of aberrant hypermethylation.<ref name=":5" /><ref name=":6" />
  | jméno1 = S.D.
  | příjmení2 = Bertagnolli
  | jméno2 = M.M.
  | článek = Molecular origins of cancer: Molecular basis of colorectal cancer
  | časopis = N Engl J Med
  | rok = 2009
  | číslo = 25
  | svazek = 361
  | strany = 2449-60
  | url = https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843693/?tool=pubmed
  | issn = 1533-4406
}}</ref>
====Cesta hypermethylace CpG ostrůvků====
Charakteristickým rysem této cesty jsou [[wikiskripta:Epigenetika|epigenetické]] změny, konkrétně hypermethylace cytosinu v CpG sekvencích. Patogenetická je hypermethylace v promotorových oblastech tumor-supresorových genů, čímž je navozen útlum jejich exprese. Hypermethylace se obvykle objevuje v promotorových sekvencích genů APC, MCC, MLH1 a MGMT. Dlužno poznamenat, že prozatím není jasné, co je vyvolávající příčinou aberantní hypermethylace.<ref name="Al-Sohaily2012" /><ref name="Markowitz2009" />


K analýze hypermethylace se používá hodnocení methylace CpG sekvencí v pěti markerovýh genech: CACNA1G, IFG2, NEUROG1, RUNX3, SOCS1. Rozlišují se dvě úrovně methylace CpG ostrůvků:
Evaluation of CpG sequence methylation in five marker genes is used to analyze hypermethylation: CACNA1G, IFG2, NEUROG1, RUNX3, SOCS1. There are two levels of CpG islet methylation:
*CIMP-high (CIMP-H) – průkaz methylace v nejméně třech markerech,
*CIMP-high (CIMP-H) - evidence of methylation in at least three markers
*CIMP-low (CIMP-L) – průkaz methylace v méně než třech markerech.
*CIMP-low (CIMP-L) - evidence of methylation in less than three markers.
CIMP-H fenotyp je často asociován s mutací BRAF.<ref name="Al-Sohaily2012" />
The CIMP-H phenotype is often associated with the BRAF mutation.<ref name=":5" />
====Vliv růstových faktorů====
====Influence of growth factors====
Na vzniku a růstu nejprve adenomu a později i karcinomu se jistou měrou podílejí i růstové faktory z okolí.
Growth factors from the environment also contribute to a certain extent to the origin and growth of first adenoma and later also carcinoma.
;Prostaglandiny
;Prostaglandins
S kolorektálním karcinomem je velmi silně asociován [[wikiskripta:Prostaglandin_E2|prostaglandin E2]] (PGE2). Na jeho syntéze se podílí [[wikiskripta:Cyklooxygenáza|cyklooxygenáza]] COX-2, zvýšená aktivita COX-2 byla prokázána zhruba u dvou třetin nádorů. Degradaci PGE2 provádí 15-prostaglandin dehydrogenáza, zhruba 80 % nádorů má defekt v tomto enzymu.<ref name="Markowitz2009" />
[[Prostaglandin E2]] (PGE2) is very strongly associated with colorectal cancer. [[Cyclooxygenase]] COX-2 is involved in its synthesis, and increased COX-2 activity has been shown in about two-thirds of tumors. Degradation of PGE2 is performed by 15-prostaglandin dehydrogenase, about 80% of tumors have a defect in this enzyme.<ref name=":6" />
;EGF
;EGF
{{Podrobnosti|EGF}}EGF (Epidermal Growth Factor) je [[wikiskripta:Cytokiny|cytokin]], který se uplatňuje v prorůstové signalizaci. Blokáda EGFR je jednou z možných terapeutických modalit pokročiléko kolorektálního karcinomu, blokáda je neúčinná u nádorů s aktivující mutací v dráze EGFR, zejména mutací KRAS, BRAF a podjednotky p110 fosfatidylinositolkinázy (PI3K).<ref name="Markowitz2009" />
EGF (Epidermal Growth Factor) is a [[cytokine]] that is involved in growth signaling. EGFR blockade is one of the possible therapeutic modalities for advanced colorectal cancer, the blockade is ineffective in tumors with activating mutations in the EGFR pathway, especially mutations KRAS, BRAF and the p110 phosphatidylinositol kinase (PI3K) subunit.<ref name=":6" />
;VEGF
;VEGF
{{Podrobnosti|VEGF}}VEGF (Vascular Endotelial Growth Factor) je [[wikiskripta:Cytokiny|cytokin]], který stimuluje vaskularizaci během růstu a neovaskularizaci hojících se tkání. Uplatňuje se i při vaskularizaci a růstu nádorů, jeho blokáda je jednou z možných terapeutických modalit pokročilého kolorektálního karcinomu.<ref name="Markowitz2009" />
VEGF (Vascular Endothelial Growth Factor) is a [[cytokine]] that stimulates vascularization during growth and neovascularization of healing tissues. It is also used in vascularization and tumor growth, its blockade is one of the possible therapeutic modalities of advanced colorectal cancer.<ref name=":6" />
===Makroskopický vzhled===
Více než polovina karcinomů se vyskytuje v rektosigma, pravostranné tumory se častěji vyskytují u starších pacientů a u pacientů s divertikulózou. Multicentrický výskyt je málo obvyklý, hlášený výskyt se pohybuje mezi třemi a šesti procenty.


Makroskopicky se může kolorektální karcinom prezentovat jako polypózní (exofytická) nebo jako vyhloubená (exulcerovaná) léze. Polypózní karcinom vystupuje nad úroveň sliznice, jeho okraje jsou poměrně strmé a bývá makroskopicky dobře ohraničený. Vyhloubený karcinom má elevované okraje, uprostřed je zahloubený a exulcerovaný. Variantou vyhloubeného karcinomu je karcinom plochý (infilrující). V pravém kolon nádor může obkružovat stěnu (carcinoma anulare) a vést až ke stenóze.<gallery mode="packed" heights="200" caption="Makroskopický vzhled kolorektálního karcinomu">
===Macroscopic appearance===
More than half of cancers occur in rectosigma, and right-sided tumors are more common in elderly patients and in patients with diverticulosis. Multicentre incidence is uncommon, with reported incidence between three and six percent.
 
Macroscopically, colorectal cancer can present as a polyposis (exophytic) or as a hollow (exulcerated) lesion. Polypose carcinoma protrudes above the level of the mucosa, its margins are relatively steep and it is usually well defined macroscopically. The excavated carcinoma has elevated margins, and is indented and exulcerated in the middle. A variant of excavated cancer is flat (infiltrating) cancer. In the right colon, the tumor may surround the wall (carcinoma anulare) and lead to stenosis.<gallery mode="packed" heights="200" caption="Makroskopický vzhled kolorektálního karcinomu">
Soubor:Colon cancer.jpg|Polypózní kolorektální karcinom (léze uprostřed, léze vpravo i vlevo jsou polypy).
Soubor:Colon cancer.jpg|Polypózní kolorektální karcinom (léze uprostřed, léze vpravo i vlevo jsou polypy).
Soubor:Colon cancer 2.jpg|Vyhloubený kolorektální karcinom.
Soubor:Colon cancer 2.jpg|Vyhloubený kolorektální karcinom.
Soubor:Adenocarcinoma of Ascending Colon Arising in Villous Adenoma.jpg|Řez karcinomem. V levé části mucinózní karcinom s invazí přes stěnu, v pravé části vilózní adenom.
Soubor:Adenocarcinoma of Ascending Colon Arising in Villous Adenoma.jpg|Řez karcinomem. V levé části mucinózní karcinom s invazí přes stěnu, v pravé části vilózní adenom.
Soubor:Adenocarcinoma, colon, gross pathology 62 lores.jpg|Exofytický cirkulárně rostoucí karcinom.
Soubor:Adenocarcinoma, colon, gross pathology 62 lores.jpg|Exofytický cirkulárně rostoucí karcinom.
</gallery>Metastaticky se kolorektální karcinom šíří především lymfatickou cestou do regionálních lymfatických uzlin. Vzhledem k uspořádání lymfatických cév v mezenteriu lze poměrně často zachytit lymfogenní metastázu i v uzlinách zdánlivě drénujících oblasti střeva od tumoru vzdálené. Hematogenní metastázy přicházejí obvykle při pokročilém onemocnění. Primárně jsou postižena játra, málo obvyklé jsou i další lokality. Pokud tumor prorůstá do peritonea, jsou možné i porogenní metastázy po peritoneu.
</gallery>Metastatic colorectal cancer spreads mainly through the lymphatic route to regional lymph nodes. Due to the arrangement of lymphatic vessels in the mesentery, lymphogenic metastasis can be detected quite often even in the nodes seemingly draining areas of the intestine far from the tumor. Hematogenous metastases usually occur in advanced disease. The liver is primarily affected, and other sites are uncommon. If the tumor grows into the peritoneum, porogenic metastases after the peritoneum are also possible.
===Histopatologie===
===Histopathology===
Histologicky je kolorektální karcinom ve více než 90 % případů adenokarcinom, další histologické typy jsou:
Histologically, colorectal cancer is in more than 90% of cases adenocarcinoma, other histological types are:
*neuroendokrinní tumor,
*dlaždicobuněčný karcinom,
*adenoskvamózní karcinom,
*vřetenobuněčný karcinom,
*nediferencovaný karcinom.
Základem pro grading '''adenokarcinomů''' je hodnocení glandulární formace:
#Dobře diferencovaný adenokarcinom se vyznačuje tím, že glandulární formace tvoří více než 95 % tumoru. Tento grade představuje zhruba 10 % všech adenokarcinomů kolorekta.
#Středně dobře diferencovaný adenokarcinom se vyznačuje tím, glandulární formace tvoří 50–95 % tumoru. Tento grade je nejčastější, představuje zhruba 70 % všech adenokarcinomů kolorekta.
#Špatně diferencovaný adenokarcinom se vyznačuje tím, že glandulární formace tvoří méně než 50 % tumoru. Tento grade představuje zhruba 20 % všech adenokarcinomů kolorekta.
Třístupňový grading je zatížen poměrně velkým podílem subjektivního hodnocení. Někteří autoři proto doporučují grading pouze se dvěma stupni, který má menší variabilitu hodnocení mezi různými patology a který by měl mít i lepší výpovědní hodnotu stran prognózy:
#Low grade adenokarcinom znamená, že glandulární formace tvoří nejméně z 50 % tumoru.
#High grade adenokarcinom znamená, že glandulární formace tvoří méně než 50 % tumoru.
Tento grading lze použít pouze na konvenční adenokarcinom, v případě jeho histologických změn může být i high-grade vzhled spojen s prognosticky příznivějším chováním.<ref name="Fleming2012">{{Citace
  | typ = článek
  | příjmení1 = Fleming
  | jméno1 = M.
  | příjmení2 = Ravula
  | jméno2 = S.
  | příjmení3 = Tatishchev
  | jméno3 = S.F.
  | kolektiv = ano
  | článek = Colorectal carcinoma: Pathologic aspects
  | časopis = J Gastrointest Oncol
  | rok = 2012
  | číslo = 3
  | svazek = 3
  | strany = 153-73
  | url = http://jgo.amegroups.com/article/view/410/html
  | issn = 2219-679X
}}</ref>


* neuroendocrine tumor,
* squamous cell carcinoma,
* adenosquamous carcinoma,
* spindle cell carcinoma,
* undifferentiated carcinoma.


Pro posouzení biologického chování je klíčové identifikovat známky invaze. Pokud je v preparátu zachycena muscularis mucosae, což nemusí být u endoskopicky odebraných vzorků pravidlem, je třeba posoudit, zda je porušena nádorem. Invazivní karcinom prorůstá přes muscularis mucosae do submukózy, kde může mít těsný vztah k submukózním cévám.
The basis for '''adenocarcinoma''' grading is the evaluation of glandular formation:


Další důležitou známkou invazivního chování je desmoplasie resp. desmoplastická reakce, tedy typ proliferace vaziva indukovaný invazivním růstem nádoru. Desmoplastická reakce je charakteristická proliferací vřetenitých buněk, které obklopují nádorovou žlázu.
# Well-differentiated adenocarcinoma is characterized by glandular formation accounting for more than 95% of the tumor. This grade represents about 10% of all colorectal adenocarcinomas.
# Moderately differentiated adenocarcinoma is characterized by glandular formation accounting for 50-95% of the tumor. This grade is the most common, accounting for about 70% of all colorectal adenocarcinomas.
# Poorly differentiated adenocarcinoma is characterized by the fact that the glandular formation makes up less than 50% of the tumor. This grade represents about 20% of all colorectal adenocarcinomas.


Unikátním a poměrně často přítomným rysem kolorektálního karcinomu je nekroticky detrit v lumen nádorových žlázek, někdy označovaný jako špinavé nekrózy (dirty necrosis). Ty se mohou objevit i v metastázách, takže představují významné vodítko při určování původu nádorů nejasného původu.


V případě kolorektálního karcinomu by měl být jako invazivní karcinom, tedy stádium pT1, označen pouze karcinom s invazí do submukózy. Nádory vrůstající do muscularis mucosae bez prorůstání dále mají jen malý potenciál zakládat vzdálené metastázy nebo metastázy v lymfatických uzlinách. Biologický důvod takového chování nádoru nejvýše vrůstajícího do muscularis mucosae není přesně známý, předpokládá se, že svoji roli sehrává relativně chudá síť lymfatických cév. Nádor nejvýše vrůstající to muscularis mucosae by se měl podle AJCC Cancer Staging Manual (7. vydání) označovat jako karcinom in situ (pTis), někteří autoři dokonce doporučují označení high grade dysplazie, aby terminologie nevyvolávala dojem potřeby dalšího chirurgického zákroku.<ref name="Fleming2012" /><gallery mode="packed" heights="200" caption="Mikroskopický vzhled kolorektálního adenokarcinomu">
Three-level grading is burdened by a relatively large share of subjective evaluation. Therefore, some authors recommend grading with only two levels, which has less variability of evaluation between different pathologists and which should also have a better informative value of the forecast pages:
 
# Low grade adenocarcinoma means that glandular formations make up at least 50% of the tumor.
# High grade adenocarcinoma means that the glandular formation makes up less than 50% of the tumor.
 
This grading can only be used for conventional adenocarcinoma; in the case of its histological changes, even a high-grade appearance can be associated with more prognostic behavior.<ref name=":7">FLEMING, M., S. RAVULA a S.F. TATISHCHEV, et al. Colorectal carcinoma: Pathologic aspects. ''J Gastrointest Oncol'' [online]''. ''2012, vol. 3, no. 3, s. 153-73, dostupné také z <<nowiki>http://jgo.amegroups.com/article/view/410/html</nowiki>>. ISSN 2219-679X. </ref>
 
 
Identifying signs of invasion is key to assessing biological behavior. If muscularis mucosae is trapped in the mount, which may not be the rule for endoscopically collected specimens, it should be assessed whether it is damaged by the tumor. Invasive carcinoma grows through the muscular mucosae into the submucosa, where it may be closely related to the submucosal vessels.
 
Another important sign of invasive behavior is desmoplasia resp. desmoplastic reaction, a type of ligament proliferation induced by invasive tumor growth. The desmoplastic reaction is characterized by the proliferation of spindle cells that surround the tumor gland.
 
A unique and relatively common feature of colorectal cancer is necrotic detritus in the lumen of the tumor glands, sometimes referred to as dirty necrosis. These can also occur in metastases, so they are an important guide in determining the origin of tumors of unknown origin.
 
In the case of colorectal cancer, only submucosal invasive cancer should be designated as invasive carcinoma, i.e. the pT1 stage. Furthermore, tumors growing into the muscularis mucosae without growth have little potential to establish distant metastases or lymph node metastases. The biological reason for such behavior of the tumor growing into the muscularis mucosae is not exactly known, it is assumed that a relatively poor network of lymphatic vessels plays a role. According to the AJCC Cancer Staging Manual (7th edition), the tumor that grows highest to the muscularis mucosae should be referred to as carcinoma in situ (pTis), and some authors even recommend high-grade dysplasia so that the terminology does not give the impression that further surgery is needed.<ref name=":7" />
 
<gallery mode="packed" heights="200" caption="Mikroskopický vzhled kolorektálního adenokarcinomu">
Soubor:Colorectal adenocarcinoma - alt -- low mag.jpg|Tubulární kolorektální karcinom, maligní tubulární formace lze srovnat s normálními strukturami v levé části obrázku.
Soubor:Colorectal adenocarcinoma - alt -- low mag.jpg|Tubulární kolorektální karcinom, maligní tubulární formace lze srovnat s normálními strukturami v levé části obrázku.
Soubor:Colorectal adenocarcinoma - alt -- high mag.jpg|Detail nádorové žlázky.
Soubor:Colorectal adenocarcinoma - alt -- high mag.jpg|Detail nádorové žlázky.
Line 231: Line 191:
Soubor:Colorectal carcinoma lymph node metastasis -- low mag.jpg|Metastáza v lymfatické uzlině.
Soubor:Colorectal carcinoma lymph node metastasis -- low mag.jpg|Metastáza v lymfatické uzlině.
Soubor:Adenocarcinoma moderate differentiated (rectum) H&E magn 400x.jpg|Středně dobře diferencovaný adenokarcinom rekta.
Soubor:Adenocarcinoma moderate differentiated (rectum) H&E magn 400x.jpg|Středně dobře diferencovaný adenokarcinom rekta.
</gallery>Kolorektální adenokarcinom může mít několik histologických variant:
</gallery>Colorectal adenocarcinoma can have several histological variants:
*mucinózní adenokarcinom,
*adenokarcinom s buňkami tvaru pečetního prstenu,
*medulární adenokarcinom,
*mikropapilární adenokarcinom,
*serátní adenokarcinom,
*kribriformní komedonový adenokarcinom,
*adenoskvamózní adenokarcinom,
*vřetenobuněčný adenokarcinom,
*nediferencovaný adenokarcinom.
;Mucinózní adenokarcinom
Definičním znakem mucinózního adenokarcinomu je to, že nejméně 50 % objemu nádoru je tvořeno extracelulárním mucinem. Karcinomy, které obsahují méně mucinu, ale stále více než 10 % objemu, se označují jako adenokarcinom s mucinózní diferenciací nebo adenokarcinom s mucinózními vlastnostmi.


Histologicky tvoří mucinózní adenokarcinom obvykle poměrně velké glandulární útvary s jezírky extracelulárního mucinu. Může být přítomen různý počet jednotlivých nádorových buněk, mohou být zachyceny i buňky tvaru pečetního prstenu.
* mucinous adenocarcinoma,
* adenocarcinoma with ring-shaped cells,
* medullary adenocarcinoma,
* micropapillary adenocarcinoma,
* seratic adenocarcinoma,
* cribriform comedon adenocarcinoma,
* adenosquamous adenocarcinoma,
* spindle cell adenocarcinoma,
* undifferentiated adenocarcinoma.
;Mucinous adenocarcinoma
A defining feature of mucinous adenocarcinoma is that at least 50% of the tumor volume is extracellular mucin. Carcinomas that contain less mucin but still more than 10% by volume are referred to as adenocarcinoma with mucinous differentiation or adenocarcinoma with mucinous properties.


Biologické chování mucinózního adenokarcinomu je nejisté. Pokud jde o nádor vzniklý na podkladě Lynchova syndromu, mívá mikrosatelitový fenotyp MSI-H a jeho chování lze hodnotit jako low-grade. Na druhou stranu pokud je mucinózní adenokarcinom spojen s mikrosatelitovým fenotypem MSS, je jeho biologické chování zřetelně agresivnější.<ref name="Fleming2012" />
Histologically, mucinous adenocarcinomas usually form relatively large glandular formations with pools of extracellular mucin. Different numbers of individual tumor cells may be present, and seal ring-shaped cells may be captured.
;Adenokarcinom z buněk tvaru pečetního prstenu
 
Definičním znakem adenokarcinomu z buněk tvaru pečetního prstenu je to, že nejméně 50 % nádorových buněk má rysy buněk tvaru pečetního prstenu. Charakteristickou vlastností buněk tvaru pečetního prstenu je objemná centrální vakuola vyplněná muciem a utlačující jádro k okraji buňky. Obvyklý je infiltrativní růst nebo záchyt volných buněk v jezírcích extracelulárního mucinu. Adenokarcinom z buněk tvaru pečetního prstenu se obvykle chová jako high-grade tumor, v případě průkazu fenotypu MSI-H lze ale očekávat low-grade chování.<ref name="Fleming2012" />
The biological behavior of mucinous adenocarcinoma is uncertain. Lynch syndrome has a microsatellite phenotype, MSI-H, and its behavior can be assessed as low-grade. On the other hand, when mucinous adenocarcinoma is associated with the microsatellite phenotype of MSS, its biological behavior is clearly more aggressive.<ref name=":7" />
;Medulární adenokarcinom
 
Medulární adenokarcinom je charakterizován pruhy epiteloidních buněk s objemnými vezikulárními jádry, zřetelnými jadérky a hojnou cytoplasmou. Poměrně obvyklá je infiltrace tumoru hojnými lymfocyty. Diferenciace buněk je obvykle špatná, buňky mohou být i nediferencované. Poměrně častý je mikrosatelitový fenotyp MSI-H. Navzdory obvykle špatné diferenciaci je prognóza poměrně dobrá.<ref name="Fleming2012" />
;Adenocarcinoma with ring-shaped cells
==Klinický management==
A defining feature of seal ring-shaped cell adenocarcinoma is that at least 50% of the tumor cells have the features of seal ring-shaped cells. A characteristic feature of the seal ring-shaped cells is the bulky central vacuole filled with mucus and pushing the nucleus to the edge of the cell. Infiltrative growth or uptake of free cells in extracellular mucin pools is common. Seal-ring cell adenocarcinoma usually behaves like a high-grade tumor, but low-grade behavior can be expected if the MSI-H phenotype is demonstrated.<ref name=":7" />
===Klinický obraz===
;Medullary adenocarcinoma
Kolorektální karcinom, zejména pravostranný, bývá v časných stádiích často klinicky němý a zachycen může být jen v rámci screeningu. Typickými projevy jsou krvácení do tlustého střeva a změny ve vyprazdňování (např. střídání průjmu a zácpy). Chronická ztráta krve může vést až k [[wikiskripta:Anémie|anémii]]. Dalším poměrně obvyklým projevem jsou nespecifické a spíše vágní bolesti břicha. Na levé straně a méně často i v kolon ascendens a v céku může být jednou z prvních manifestací nádoru obstrukce tlustého střeva.
Medullar adenocarcinoma is characterized by strips of epithelioid cells with bulky vesicular nuclei, distinct nucleoli and abundant cytoplasm. Tumor infiltration by abundant lymphocytes is relatively common. Cell differentiation is usually poor, cells can be undifferentiated. The microsatellite phenotype MSI-H is relatively common. Despite the usually poor differentiation, the prognosis is relatively good.<ref name=":7" />
==Clinical management==
===Clinical picture===
Colorectal cancer, especially right-sided cancer, is often clinically silent in the early stages and can only be detected at screening. Typical manifestations are bleeding into the colon and changes in bowel movements (eg alternating diarrhea and constipation). Chronic blood loss can lead to [[anemia]]. Another relatively common manifestation is non-specific and rather vague abdominal pain. On the left side and less often in the colonic ascendant and in the cecum, colonic obstruction may be one of the first manifestations of the tumor.
===Screening===
===Screening===
{{Podrobnosti|Screening nádorů tlustého střeva}}Včasný záchyt kolorektálního karcinomu představuje faktor, který výrazně zlepšuje prognózu nemocného. Cílem screeningu je nejen odhalit již vzniklou malignitu, ale i [[wikiskripta:Polypy_tlustého_střeva|premaligní změny]]. Optimální načasování jednotlivých screeningových metod je otázkou stále probíhajícího výzkumu.<ref name="Cunningham20102">{{Citace
Early detection of colorectal cancer is a factor that significantly improves the patient's prognosis. The aim of screening is not only to detect an existing malignancy, but also [[Polyps of the large intestine|premalignant changes]]. The optimal timing of individual screening methods is a matter of ongoing research.<ref name=":2" />
  | typ = článek
 
  | příjmení1 = Cunningham
====Occult bleeding====
  | jméno1 = D.
Fecal Occult Blood (FOB) is a condition in which there is an admixture of blood in the stool that exceeds the physiological blood loss to the stool. The test is relatively cheap, not burdensome, but it is less sensitive. Nevertheless, its regular implementation every two years has the potential to reduce colorectal cancer-related mortality by up to 16%.<ref name=":2" />
  | příjmení2 = Atkin
 
  | jméno2 = W.
====Sigmoidoscopy====
  | příjmení3 = Lenz
Examination of the rectosigma with a flexible 60 cm sigmoidoscope allows the detection of about 60% of colorectal cancers. The advantage over colonoscopy is easier preparation of the patient, an [[enema]] is sufficient for the procedure, and also a lower risk of complications.<ref name=":2" />
  | jméno3 = H.J.
====Colonoscopy====
  | kolektiv = ano
Colonoscopy is the gold diagnostic standard because, in addition to overlooking the mucosa of virtually the entire colon, it also allows for sampling of suspected lesions and the excretion of premalignant lesions.
  | článek = Colorectal cancer
 
  | časopis = Lancet
====Virtual colonoscopy====
  | rok = 2010
Virtual colonoscopy (CT colonography) may be suitable for assessing the exact location of the tumor, especially in cases where colonoscopy cannot be performed. The disadvantage is the radiation exposure of the patient.
  | číslo = 9719
 
  | svazek = 375
====Capsule colonoscopy====
  | strany = 1030-47
Capsule colonoscopy is a screening method that involves swallowing a capsule capable of taking pictures of the digestive tract. The main advantage compared to conventional colonoscopy is higher patient comfort (and thus higher compliance) and lower risk of complications, the disadvantage is the inability to take a sample for histological examination and the time required to evaluate the record. If a suspected lesion is detected, a classic colonoscopy should be performed.<ref>M. VOŠKA a G. VEPŘEKOVÁ, et al. Kolonická kapsle v kontextu screeningu kolorektálního karcinomu. ''Onkologie'' [online]''. ''2012, vol. 6, no. 3, s. 165-168, dostupné také z <<nowiki>http://www.onkologiecs.cz/pdfs/xon/2012/03/08.pdf</nowiki>>. ISSN 1803-5345. </ref>
  | issn = 1474-547X
 
}}</ref>
====Molecular biological tests====
====Okultní krvácení====
In the research phase, screening tests are based on the analysis of DNA in blood or stool.<ref name=":2" />
{{Podrobnosti|Testy okultního krvácení ve stolici}}Okultní krvácení (FOB, Fecal Occult Blood) je stav, při kterém je ve stolici příměs krve přesahující fyziologické krevní ztráty do stolice. Test je poměrně levný, nezatěžující, je ale méně senzitivní. Přesto má jeho pravidelné provádění v intervalu dva roky potenciál redukovat mortalitu asociovanou s kolorektálním karcinomem až o 16 %.<ref name="Cunningham20102" />
===Diagnostics===
====Sigmoidoskopie====
The diagnosis is determined on the basis of sigmoidoscopic resp. colonoscopy with histological examination. The newly diagnosed tumor should be followed by additional tests (if not already performed):<ref name=":2" />
Vyšetření rektosigma flexibilním 60&nbsp;cm sigmoidoskopem umožňuje odhalit asi 60 % kolorektálních karcinomů. Výhodou oproti kolonoskopii je snazší příprava pacienta, pro provedení postačuje [[wikiskripta:Klysma|klysma]], a také nižší riziko komplikací.<ref name="Cunningham20102" />
 
====Kolonoskopie====
* physical exam,
{{Podrobnosti|Kolonoskopie}}Kolonoskopie je zlatý diagnostický standard, protože vedle přehlédnutí sliznice prakticky celého tlustého střeva umožňuje i odběru vzorků ze suspektních lézí a exicizi premaligních lézí.
* complete colonoscopy to rule out metachronous cancer elsewhere in the colon,
====Virtuální kolonoskopie====
* CT examination of the lungs, abdomen and pelvis to detect possible metastatic disease.
{{Podrobnosti|Virtuální kolonoskopie}}Virtuální kolonoskopie (CT kolonografie) může být vhodná pro posouzení přesné lokalizace nádoru zejm. v případech, kdy nelze kolonoskopii provést. Nevýhodou je radiační zátěž pacienta.
 
====Kapslová kolonoskopie====
In rectal cancer, MR examination is more effective, especially with regard to assessing the spread of the tumor into the mesorectum and thus to assess the appropriate extent of resection. In the case of early tumors, endoscopic ultrasound can be used to assess invasion. Both of these methods have their advantages and limitations. Ultrasound examination is advantageous for the examination of the liver, and the use of ultrasound contrast agents seems promising. Peritoneal carcinomatosis remains a diagnostic problem.<ref name=":2" />
{{Podrobnosti|Kapslová endoskopie}}Kapslová kolonoskopie je screeningová metoda, která spočívá v polknutí kapsle schopné pořizovat snímky trávicího traktu. Hlavní výhodnou ve srovnání s klasickou kolonoskopií je vyšší komfort pacienta (a tedy vyšší compliance) a nižší riziko komplikací, nevýhodou je nemožnost odebrat vzorek pro histologické vyšetření a časová náročnost vyhodnocení záznamu. V případě záchytu suspektní léze je třeba provést klasickou kolonoskopii.<ref name="Suchanek2012">{{Citace
====ICD====
  | typ = článek
;The primary localization is determined by several ICD-10 codes:'''C18, C19, C20, C21'''
  | příjmení = Suchánek
 
  | jméno1 = Š.
* '''C18:''' Malignant neoplasm of colon.
  | příjmení2 = Voška
** '''C18.0:''' Cecum and ileocecal valve.
  | jméno2 = M.
** '''C18.1:''' Appendix.
  | příjmení3 = Vepřeková
** '''C18.2:''' Colon ascendens.
  | jméno3 = G.
** '''C18.3:''' Hepatic flexure
  | kolektiv = ano
** '''C18.4:''' Transverse column.
  | článek = Kolonická kapsle v kontextu screeningu kolorektálního karcinomu
** '''C18.5:''' Linear flexure.
  | časopis = Onkologie
** '''C18.6:''' Descendant Colon.
  | rok = 2012
** '''C18.7:''' Colon sigmoid.
  | svazek = 6
** '''C18.8:''' The lesion extends beyond the intestine.
  | číslo = 3
** '''C18.9:''' Not specified.
  | strany = 165-168
 
  | url = http://www.onkologiecs.cz/pdfs/xon/2012/03/08.pdf
* '''C19:''' Malignant neoplasm of rectosigmoid junction.
  | issn = 1803-5345
* '''C20:''' Malignant neoplasm of rectum.
}}</ref>
* '''C21:''' Malignant neoplasm of anus and anal canal.
====Molekulárně biologické testy====
** '''C21.0:''' Anus, unspecified.
Ve fázi výzkumu jsou screeningové testy založené na analýze DNA v krvi nebo ve stolici.<ref name="Cunningham20102" />
** '''C21.1:''' Anal canal.
===Diagnostika===
** '''C21.2:''' Klocogenic zone.
Diagnóza je stanovena na základě sigmoideoskopického resp. kolonoskopického vyšetření s odběrem vzorku na histologické vyšetření. Nově diagnostikovaný nádor by měl být následován dalšími vyšetřeními (pokud již nebyly provedeny):<ref name="Cunningham20102" />
** '''C21.8:''' The lesion extends beyond the rectum, anus and anal canal.
*fyzikální vyšetření,
 
*kompletní kolonoskopie k vyloučení metachronního karcinomu na jiném místě tlustého střeva,
*CT vyšetření plic, břicha a pánve pro záchyt případného metastatického postižení.
U karcinomu rekta je MR vyšetření účelnější zejména s ohledem na posouzení šíření tumoru do mesorekta a tím k posouzení vhodného rozsahu resekce. V případě časných nádorů lze k hodnocení invaze použít endoskopického ultrazvukového vyšetření. Obě tyto metody mají své výhody i limitace. K vyšetření jater je výhodné ultrazvukové vyšetření, slibně se jeví použití ultrazvukových kontrastních látek. Diagnostickým problémem zůstává karcinomatóza peritonea.<ref name="Cunningham20102" />
====MKN====
;Primární lokalizace je určena několika kódy MKN-10:{{MKN|C15-C26|C18}}, {{MKN|C15-C26|C19}}, {{MKN|C15-C26|C20}}, {{MKN|C15-C26|C21}}
*'''C18''': Zhoubný novotvar tlustého střeva.
**'''C18.0''': Cékum a ileocekální chlopeň.
**'''C18.1''': Appendix.
**'''C18.2''': Colon ascendens.
**'''C18.3''': Flexura hepatica
**'''C18.4''': Colon transversum.
**'''C18.5''': Flexura lienalis.
**'''C18.6''': Colon descendens.
**'''C18.7''': Colon sigmoideum.
**'''C18.8''': Léze přesahuje střevo.
**'''C18.9''': Nespecifikováno.
*'''C19''': Zhoubný novotvar rektosigmoideálního spojení.
*'''C20''': Zhoubný novotvar konečníku.
*'''C21''': Zhoubný novotvar řiti a řitního kanálu.
**'''C21.0''': Řiť, nespecifikováno.
**'''C21.1''': Řitní kanál.
**'''C21.2''': Kloakogenní zóna.
**'''C21.8''': Léze přesahuje rektum, řiť a řitní kanál.
====Staging====
====Staging====
Pro adekvátní stanovení postižení lymfatických uzlin by mělo být vyšetřeno nejméně 12 lymfatických uzlin.<ref name="Cunningham20102" /> Technické podmínky to někdy neumožňují, a proto se za známku horší práce patologie pokládá pouze pokud průměrný počet vyšetřených uzlin ve větším počtu resekátů klesá významně pod 12.
{| class="wikitable"
|+
! colspan="2" |TNM classification of colorectal cancer
'''Primary tumor size'''
|-
|TX
|the primary tumor could not be evaluated
|-
|T0
|primary tumor not found
|-
|Tis
|intraepithelial growth or invasion of the lamina propria
|-
|T1
|invasion of submucosa
|-
|T2
|invasion of the muscular propria
|-
|T3
|invasion through the muscularis mucosae into the surrounding tissues
|-
|T4a
|penetration of the visceral peritoneum surface
|-
|T4b
|penetration into surrounding organs
|-
| colspan="2" |                                    '''Lymph node involvement'''
|-
|NX
|lymph nodes could not be evaluated
|-
|N0
|lymph nodes without metastases
|-
|N1
|metastases in one to three regional nodes
|-
|N1a
|metastasis in one regional node
|-
|N1b
|metastases in two to three regional nodes
|-
|N2
|metastases in four or more regional nodes
|-
|N2a
|metastases in four to six regional nodes
|-
|N2b
|metastases in seven or more regional nodes
|-
| colspan="2" |                                            '''Distant metastases'''
|-
|MX
|distant metastases could not be evaluated
|-
|M0
|without evidence of distant metastases
|-
|M1
|distant metastases
|-
|M1a
|distant mesastases in one anatomical locality
|-
|M1b
|distant metastases in multiple anatomical localities
|}
At least 12 lymph nodes should be examined for adequate lymph node involvement.<ref name=":2" /> Technical conditions sometimes do not allow this, and therefore a sign of worse pathology work is considered only if the average number of examined nodes in a larger number of resections drops significantly below 12.
;Clinical stages
 
* '''stage 0''': TisN0M0
* '''stage I:''' T1N0M0 or T2N0M0
* '''stage IIA:''' T3N0M0
* '''stage IIB:''' T4N0M0
* '''stage IIIA:''' T1N1M0 or T2N1M0
* '''stage IIIB''': T1N2M0, T2N2M0 or T3N1M0
* '''stage IIIC:''' T3N2M0, T4N1M0, T4N2M0
* '''stage IVA:''' any T and N, distant metastases in one anatomical locality
* '''stage IVB:''' any T and N, distant metastases in more than one anatomical locality
;Dukes classification
 
* '''stage A:''' tumor bounded by the intestinal wall
* '''stage B:''' the tumor invades or penetrates serosis
* '''stage C:''' lymph node involvement
** '''stage C1:''' positive pericolic lymph nodes
** '''stage C2:''' positive perivascular nodes
* '''stage D:''' distant metastases


{{TNM
| nazev = TNM klasifikace kolorektálního karcinomu
<!-- Barevné nastavení -->
| pozadi = #EEEEEE
| zvyrazneni = #AAAAAA
<!-- Velikost tumoru -->
| TX = primární tumor nemohl být hodnocen
| T0 = primární tumor nenalezen
| Tis = intraepiteliální růst nebo invaze do lamina propria
| T1 = invaze do submukózy
| T2 = invaze do muscularis propria
| T3 = inzave přes muscularis mucosae do okolních tkání
| T4a = penetrace povrchu viscerálního peritonea
| T4b = prorůstání do okolních orgánů
<!-- Lymfatické uzliny -->
| NX = lymfatické uzliny nemohly být hodnoceny
| N0 = lymfatické uzliny bez metastáz
| N1 = metastázy v jedné až třech regionálních uzlinách
| N1a = metastáza v jedné regionální uzlině
| N1b = metastázy ve dvou až třech regionálních uzlinách
| N2 = metastázy ve čtyřech a více regionálních uzlinách
| N2a = metastázy ve čtyřech až šesti regionálních uzlinách
| N2b = metastázy v sedmi a více regionálních uzlinách
<!-- Vzdálené metastázy -->
| MX = vzdálené metastázy nemohly být hodnoceny
| M0 = bez průkazu vzdálených metastáz
| M1 = vzdálené metastázy
| M1a = vzdálené mezastázy v jedné anatomické lokalitě
| M1b = vzdálené metastázy ve více anatomických lokalitách
}} <!--ústní sdělení v Litomyšli, snad časem najdu tištěný zdroj-->
;Klinická stádia:
*'''stádium 0''': TisN0M0
*'''stádium I''': T1N0M0 nebo T2N0M0
*'''stádium IIA''': T3N0M0
*'''stádium IIB''': T4N0M0
*'''stádium IIIA''': T1N1M0 nebo T2N1M0
*'''stádium IIIB''': T1N2M0, T2N2M0 nebo T3N1M0
*'''stádium IIIC''': T3N2M0, T4N1M0,T4N2M0
*'''stádium IVA''': jakékoliv T a N, vzdálené metastázy v jedné anatomické lokalitě
*'''stádium IVB''': jakékoliv T a N, vzdálené metastázy ve více než jedné anatomické lokalitě
;Dukesova klasifikace
*'''stádium A''': tumor ohraničen střevní stěnou
*'''stádium B''': tumor zasahuje nebo proniká serózou
*'''stádium C''': postižení lymfatických uzlin
**'''stádium C1''': pozitivní perikolické lymfatické uzliny
**'''stádium C2''': pozitivní perivaskulární uzliny
*'''stádium D''': vzdálené metastázy
====Typing a grading====
====Typing a grading====
Typing a grading se řídí WHO klasifikací tumorů kolorekta (. [[wikiskripta:MKN-O|MKN-O]] kódů, zkráceno):<ref name="WHO2000">{{Citace
Typing and grading are governed by the WHO classification of colorectal tumors (incl. ICD-O codes, abbreviated):<ref>HAMILTON, Stanley R. a Lauri A. AALTONEN. ''WHO Classification of Tumours : Pathology and Genetics of Tumours of the Digestive Syste,'' [online] ''. ''1. vydání. Lyon : IARC Press, 2000. Dostupné také z <<nowiki>http://publications.iarc.fr</nowiki>>. <nowiki>ISBN 92-832-2410-8</nowiki>.</ref>
| typ = kniha
 
| příjmení1 = Hamilton
* '''Carcinomas:'''
| jméno1 = Stanley R.
** adenocarcinoma 8140/3
| příjmení2 = Aaltonen
** mucinous adenocarcinoma 8480/3
| jméno2 = Lauri A.
** seal ring cell carcinoma 8490/3
| kolektiv = Eds.
** small cell carcinoma 8041/3
| titul = WHO Classification of Tumours
** squamous cell carcinoma 8070/3
| podnázev = Pathology and Genetics of Tumours of the Digestive Syste,
** adenosquamous carcinoma 8560/3
| vydání = 1
** medullary carcinoma 8510/3
| rok = 2000
** undifferentiated carcinoma 8020/3
| vydavatel = IARC Press
 
| místo = Lyon
* '''Carcinoid 8240/3'''
| isbn = 92-832-2410-8
** EC cells, serotonin producing neoplasia 8241/3
| url = http://publications.iarc.fr 
 
}}</ref>
* '''Mixed carcinoid-adenocarcinoma 8244/3'''
*'''Karcinomy:'''
* '''Non-epithelial tumors'''
**adenokarcinom 8140/3
** gastrointestinal stromal tumor 8936/1
**mucinózní adenokarcinom 8480/3
** leiomyosarcoma 8890/3
**karcinom z buněk tvaru pečetního prstenu 8490/3
** angiosarcoma 9120/3
**malobuněčný karcinom 8041/3
** Kapisi's sarcoma 9140/3
**dlaždicobuněčný karcinom 8070/3
** malignant melanoma 8720/3
**adenoskvamózní karcinom 8560/3
* '''lymphoma'''
**medulární karcinom 8510/3
 
**nediferencovaný karcinom 8020/3
===Therapy===
*'''Karcinoid''' 8240/3
====Surgical therapy====
**EC buňky, serotonin produkující neoplazie 8241/3
Surgical therapy is a basic therapeutic modality. If it is chosen, it is appropriate to perform a sufficiently radical performance, incl. lymphadenectomy. The resection margin should be at least 5 cm from the tumor if possible; some authors consider a distal edge of the rectal resection of 2 cm to be sufficient. The extent of resected adipose tissue should be such that at least 12 lymph nodes can be examined. In the case of T4, only a sufficiently large resection "en bloc" can be considered as a resection with intact resection margins. Mechanical contusion of the tumor during resection can spread it, and therefore the technique of surgery is adapted to prevent such spread - the no-touch concept. If the tumor is traumatized during the procedure, adjuvant chemotherapy should be used.<ref name=":4" /><ref name=":2" />
*'''Smíšený karcinoid-adenokarcinom''' 8244/3
 
*'''Neepiteliální tumory'''
For invasive rectal cancer, the method of choice is [[total mesorectal excision]] (TME) with adequate circular and distal resection margins and excision of the lower mesenteric lymph nodes. The sphincter-saving procedures are intended for patients in the lower stage of the disease; in the very early stages (T1Sm1), local exicciation can also be considered.<ref name=":2" />
**gastrointestinální stromální tumor 8936/1
 
**leiomyosarkom 8890/3
[[Laparoscopic colectomy]] is the method of choice for colon tumors. From the oncological point of view, the results of the laparoscopic procedure can be considered identical to the laparotomy procedures, the laparoscopic procedure is more advantageous for the patient.<ref name=":2" />
**angiosarkom 9120/3
 
**Kapisiho sarkom 9140/3
Resection of liver and lung metastases, if established, significantly increases patient survival. In addition to surgical resection, eg local embolization or radiofrequency ablation is used; these methods increase the number of patients who can be treated for metastases. Neoadjuvant chemotherapy may also target metastases.<ref name=":2" />
**maligní melanom 8720/3
 
*'''lymfomy'''
Palliative procedures, especially bypass surgery and derivation stoma, are possible for unresectable tumors or tumors of patients not operable for comorbidities. These procedures can improve the patient's quality of life and, in conjunction with appropriate pharmacotherapy, survival.<ref name=":4" />
===Terapie===
====Radiotherapy====
====Chirurgická terapie====
Neoadjuvant radiotherapy allows surgery to be performed at a higher stage in patients at all, but does not in itself affect overall survival.<ref name=":4" />
Chirurgická terapie představuje základní terapeutickou modalitu. Pokud je zvolena, je vhodné provést dostatečně radikální výkon vč. lymfadenektomie. Resekční okraj by měl být vzdálen pokud možno alespoň 5&nbsp;cm od tumoru; někteří autoři pokládají za dostatečnou vzdálenost distálního okraje resekátu rekta 2&nbsp;cm. Rozsah resekované tukové tkáně by měl být takový, aby bylo možno vyšetřit nejméně 12 lymfatických uzlin. V případě T4 lze za resekci s intaktními resekčními okraji pokládat jen dostatečně rozsáhlou resekci "en bloc". Mechanickým zhmožděním nádoru při resekci může dojít k jeho šíření, a proto je technika chirurgického výkonu uzpůsobena tomu, aby k takovému šíření nedocházelo - koncept no-touch. Pokud dojde během výkonu k traumatizaci tumoru, je na místě nasadit adjuvantní chemoterapii.<ref name="Cunningham20102" /><ref name="Kala20112">{{Citace
====Pharmacotherapy====
  | typ = článek
Neoadjuvant chemotherapy is usually given with 5-fluorouracil, sometimes combined with radiotherapy.<ref name=":8">a J. HALÁMKOVÁ. Systémová protinádorová léčba kolorektálního karcinomu. ''Onkologie'' [online]''. ''2013, vol. 7, no. 4, s. 188-189, dostupné také z <<nowiki>http://www.onkologiecs.cz/pdfs/xon/2013/04/07.pdf</nowiki>>. ISSN 1803-5345. </ref>
  | příjmení1 = Kala
  | jméno1 = Z.
  | příjmení2 = Kysela
  | jméno2 = P.
  | příjmení3 = Ostřížková
  | jméno3 = L.
  | kolektiv = ano
  | článek = Chirurgická a miniinvazivní léčba kolorektálního karcinomu
  | časopis = Onkologie
  | rok = 2011
  | svazek = 5
  | číslo = 5
  | strany = 270-272
  | url = http://www.onkologiecs.cz/pdfs/xon/2011/05/07.pdf
  | issn = 1803-5345  
}}</ref>


Pro invazivní karcinom rekta je metodou volby [[wikiskripta:Totální_mesorektální_excize|totální mesorektální excize]] (TME) s adekvátními cirkulárními i distálními resekčními okraji a excizí dolních mesenterických lymfatických uzlin. Výkony šetřící svěrač jsou určeny pro pacienty v nižším stádiu onemocnění, ve velmi časných stádiích (T1Sm1) lze uvažovat i o lokální exicizi.<ref name="Cunningham20102" />
Adjuvant chemotherapy improves survival in II. stage by a few percent, in III. stage by 15-20%. For this reason, in III. stage of adjuvant chemotherapy is fully indicated. In addition to [[5-fluorouracil]], [[oxaliplatin]] is also used. Biological therapy is not indicated in adjuvant therapy.<ref name=":8" />


Pro nádory kolon je metodou volby [[wikiskripta:Laparoskopická_kolektomie|laparoskopická kolektomie]]. Výsledky laparoskopického výkonu lze z onkologického hlediska pokládat podle výsledků za shodné s laparotomickými výkony, laparoskpický výkon je pro pacienta výhodnější.<ref name="Cunningham20102" />
Therapy IV. stage is a complex matter, the procedure is chosen according to the patient's condition and the extent of metastatic disability. In addition to cytostatics ([[5-fluorouracil]], [[oxaliplatin]], [[irinotecan]], [[fluoropyrimidine]]), biological therapy can also be used if its results can be expected from the results of molecular examination. Currently available:<ref name=":8" />


Resekce jaterních a plicních metastáz, pokud jsou vytvořeny, signifikantně zvyšuje přežití nemocných. Vedle chirurgické resekce se používá např. lokální embolizace nebo radiofrekvenční ablace; tyto metody zvyšují počet pacientů, kterým mohou být ošetřeny metastázy. Na metastázy může být cílena i neoadjuvantní chemoterapie.<ref name="Cunningham20102" />
* EGFR receptor inhibitors [[cetuximab]] and [[panitumumab]],
* [[bevacizumab]] anti-[[VEFG]] antibody,
* [[aflibercept]] - circulating VEGF binding protein,
* protein kinase inhibitor [[regorafenib]] signaling cascade series.


U neresekabilních tumorů nebo u tumorů pacientů neoperovatelných pro komorbity přicházejí v úvahu paliativní výkony, zejména bypassové operace a derivační stomie. Tyto výkony mohou zlepšit kvalitu života nemocného a ve spojení s vhodnou farmakoterapií i přežití.<ref name="Kala20112" />
==Prognosis==
====Radioterapie====
The prognosis of adenocarcinoma is similar in cancer of the rectum and colon, depending mainly on the clinical stage. Five-year survival is as follows:<ref name=":2" />
Neoadjuvantní radioterapie umožňuje vůbec provedení chirurgického výkonu u pacientů ve vyšším stádiu, sama o sobě ale nemá vliv na celkové přežití.<ref name="Kala20112" />
====Farmakoterapie====
Neoadjuvantní chemoterapie se obvykle provádí 5-fluorouracilem, někdy se kombinuje s radioterapií.<ref name="Tomasek2013">{{Citace
  | typ = článek
  | příjmení = Tomášek
  | jméno1 = J.
  | příjmení2 = Halámková
  | jméno2 = J.
  | kolektiv = ne
  | článek = Systémová protinádorová léčba kolorektálního karcinomu
  | časopis = Onkologie
  | rok = 2013
  | svazek = 7
  | číslo = 4
  | strany = 188-189
  | url = http://www.onkologiecs.cz/pdfs/xon/2013/04/07.pdf
  | issn = 1803-5345 
}}</ref>


Adjuvantní chemoterapie zlepšuje přežití ve II. stádiu o několik procent, ve III. stádiu již o 15-20 %. Z toho důvodu je ve III. stádiu adjuvantní chemoterapie plně indikována. Vedle [[wikiskripta:Fluorouracil|5-fluorouracilu]] se používá i [[wikiskripta:Oxaliplatina|oxaliplatina]]. Biologická terapie není v adjuvantní terapii indikovaná.<ref name="Tomasek2013" />
* stage I: 97.1%
* stage IIA: 87.5%
* stage IIB: 71.5%
* stage IIIA: 87.7%
* Stage IIIB: 75.0% (if N1), 68.7% (if N2)
* Stage IIIC: 47.3% (T3, N2), 50.5% (T4, N1), 27.1% (T4N2)


Terapie IV. stádia je komplexní záležitostí, postup je volen podle stavu pacienta a rozsahu metastatického postižení. Vedle cytostatik ([[wikiskripta:Fluorouracil|5-fluorouracil]], [[wikiskripta:Oxaliplatina|oxaliplatina]], [[wikiskripta:Irinotekan|irinotekan]], [[wikiskripta:Fluoropyrimidin|fluoropyrimidin]]) lze použít i biologickou terapii, pokud lze z výsledků molekulárního vyšetření předpokládat její účinnost. V současné době jsou k dispozici:<ref name="Tomasek2013" />
In the fourth stage, the prognosis depends on which organs are metastatically affected, what is the extent of the metastatic disability and what is the overall condition of the patient. Overall, however, the prognosis is not very favorable and at this stage colorectal cancer is usually considered incurable in terms of curative therapeutic intent in the choice of therapeutic modalities.<ref name=":6" />
*inhibitory receptoru EGFR [[wikiskripta:Cetuximab|cetuximab]] a [[wikiskripta:Panitumumab|panitumumab]],
*anti-[[wikiskripta:VEFG|VEFG]] protilátka [[wikiskripta:Bevacizumab|bevacizumab]],
*[[wikiskripta:Aflibercept|aflibercept]] – protein vážící cirkulující VEGF,
*inhibitor proteinkináz řady signalizačních kaskád [[wikiskripta:Regorafenib|regorafenib]].
==Prognóza==
Prognóza adenokarcinomu je podobná u karcinomu rekta i tlustého střeva, odvíjí se především od klinického stádia. Pětileté přežití je následující:<ref name="Cunningham20102" />
*stádium I: 97.1 %
*stádium IIA: 87.5 %
*stádium IIB: 71.5 %
*stádium IIIA: 87.7 %
*stádium IIIB: 75.0 % (pokud je N1), 68.7 % (pokud je N2)
*stádium IIIC: 47.3 % (T3, N2), 50.5 % (T4, N1), 27.1 % (T4N2)
Ve čtvrtém stádiu se prognóza odvíjí od toho, jaké orgány jsou metastaticky postiženy, jaký je rozsah metastatického postižení a jaký je celkový stav nemocného. Celkově však není prognóza příliš příznivá a v tomto stádiu je kolorektální karcinom obvykle pokládám za neléčitelný ve smyslu kurativního terapeutického záměru při volbě terapeutických modalit.<ref name="Markowitz2009" />
==Odkazy==
==Odkazy==
===Reference===
===Reference===
<references />
<references />


===Virtuální preparáty===
===Virtual preparations===
===Související články===
===Related articles===
*[[wikiskripta:Kolorektální_karcinom|Kolorektální karcinom]]
*[[Colorectal carcinoma]]
*[[wikiskripta:Léčba_jaterních_metastáz_u_kolorektálního_karcinomu|Léčba jaterních metastáz u kolorektálního karcinomu]]
*[[Treatment of liver metastases in colorectal cancer]]
*[[wikiskripta:Polypy_tlustého_střeva|Polypy tlustého střeva]]
*[[Colon polyps]]
*[[wikiskripta:Soubor:Vienna.pdf|Vídeňská klasifikace gastrointestinálních neoplazií (2002)]]
*[[wikiskripta:Soubor:Vienna.pdf|Vienna Classification of Gastrointestinal Neoplasias (2002)]]
===Literatura===
===Literature===
* {{Citace
 
| typ = kniha
* ROSAI, Juan. Ackerman's Surgical Pathology. 8th edition. St. Louis, MO: Mosby, 1996. vol. 1. <nowiki>ISBN 0-8016-7004-7</nowiki>.
| příjmení1 = Rosai
* HAMILTON, Stanley R. and Lauri A. AALTONEN. WHO Classification of Tumors: Pathology and Genetics of Tumors of the Digestive System, [online]. 1st edition. Lyon: IARC Press, 2000. Also available from <http://publications.iarc.fr>. <nowiki>ISBN 92-832-2410-8</nowiki>.
| jméno1 = Juan
* POVÝŠIL, Ctibor and Ivo ŠTEINER, et al. Special pathology. 2nd edition. Prague: Galén: Karolinum, 2007. <nowiki>ISBN 978-80-7262-494-2</nowiki>.
| kolektiv = Eds.
 
| titul = Ackerman's Surgical Pathology
*
| svazek = 1
*
| vydání = 8
*
| rok = 1996
===External links===
| vydavatel = Mosby
 
| místo = St. Louis, MO
| isbn = 0-8016-7004-7}}
* {{Citace
| typ = kniha
| příjmení1 = Hamilton
| jméno1 = Stanley R.
| příjmení2 = Aaltonen
| jméno2 = Lauri A.
| kolektiv = Eds.
| titul = WHO Classification of Tumours
| podnázev = Pathology and Genetics of Tumours of the Digestive Syste,
| vydání = 1
| rok = 2000
| vydavatel = IARC Press
| místo = Lyon
| isbn = 92-832-2410-8
| url = http://publications.iarc.fr}}
* {{Citace
| typ = kniha
| isbn = 978-80-7262-494-2
| příjmení1 = Povýšil
| jméno1 = Ctibor
| příjmení2 = Šteiner
| jméno2 = Ivo
| kolektiv = ano
| titul = Speciální patologie
| vydání = 2
| místo = Praha
| vydavatel = Galén:Karolinum
| rok = 2007}}
===Externí odkazy===
* Dušek, L., Zavoral, M., Májek, O., Suchánek, Š., Mužík, J., Pavlík, T., Šnajdrová, L., Gregor, J. Kolorektum.cz – Program kolorektálního screeningu v České republice [online]. Masarykova univerzita, Brno, 2014. Dostupné z WWW: [http://www.kolorektum.cz/]. ISSN 1804-0888.
* Dušek, L., Zavoral, M., Májek, O., Suchánek, Š., Mužík, J., Pavlík, T., Šnajdrová, L., Gregor, J. Kolorektum.cz – Program kolorektálního screeningu v České republice [online]. Masarykova univerzita, Brno, 2014. Dostupné z WWW: [http://www.kolorektum.cz/]. ISSN 1804-0888.
* {{Citace
* VYZULA,., et al. ''Modrá kniha České onkologické společnosti'' [online] ''. ''19. vydání. 2014. Dostupné také z <https://www.linkos.cz/files/modra-kniha/12.pdf>. Doporučení České onkologické společnosti ČLS JEP. <nowiki>ISBN 978-80-86793-35-1</nowiki>.
| typ = kniha
* MARKOWIT.D. a M.M. BERTAGNOLLI. Molecular origins of cancer: Molecular basis of colorectal cancer. ''N Engl J Med'' [online]''. ''2009, vol. 361, no. 25, s. 2449-60, dostupné také z <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843693/?tool=pubmed>. ISSN 1533-4406. 
| příjmení1 = Vyzula
| jméno1 = R.
| kolektiv = ano
| titul = Modrá kniha České onkologické společnosti
| vydání = 19
| rok = 2014
| isbn = 978-80-86793-35-1
| url = https://www.linkos.cz/files/modra-kniha/12.pdf
| poznámky = Doporučení České onkologické společnosti ČLS JEP}}{{Virtuální preparát
  | přelepka = Rosai
  | ikona1 = Colorectal carcinoma lymph node metastasis -- low mag.jpg
  | url1 = http://rosai.secondslide.com/sem1483/sem1483-case2.svs
  | popis1 = Adenokarcinom [http://www.rosaicollection.org/casedetails.cfm?c=19059].
  | ikona2 = Colorectal carcinoma lymph node metastasis -- low mag.jpg
  | url2 = http://rosai.secondslide.com/sem1458/sem1458-case15.svs
  | popis2 = Mukózní karcinom [http://www.rosaicollection.org/casedetails.cfm?c=18450].
  | ikona3 = Colorectal carcinoma lymph node metastasis -- low mag.jpg
  | url3 = http://rosai.secondslide.com/sem1474/sem1474-case20.svs
  | popis3 = Středně dobře diferencovaný dlaždicobuněčný karcinom [http://www.rosaicollection.org/casedetails.cfm?c=18853]
}}
* {{Citace
  | typ = článek
  | příjmení1 = Markowitz
  | jméno1 = S.D.
  | příjmení2 = Bertagnolli
  | jméno2 = M.M.
  | článek = Molecular origins of cancer: Molecular basis of colorectal cancer
  | časopis = N Engl J Med
  | rok = 2009
  | číslo = 25
  | svazek = 361
  | strany = 2449-60
  | url = https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843693/?tool=pubmed
  | issn = 1533-4406}}

Revision as of 19:32, 29 January 2022

Colorectal cancer (CRC) is one of the most common cancers in developed countries. About a third of patients die from cancer, but it is still one of the most common causes of cancer-related deaths worldwide. It can arise on the basis of polyps, a smaller number of tumors can arise even without previous polyps. It is stated that a maximum of 85% of colorectal cancer cases occur sporadically under the influence of risk factors, especially lifestyle, the rest of the tumors are of hereditary origin. The actual proportion of hereditary influences is probably much higher, eg milder forms of Lynch syndrome often escape diagnosis. The basis of therapy is surgery, the basis of therapeutic success is early diagnosis, usually through screening when the tumor is clinically silent. Colorectal cancer can occur in several ways, the most common, originally considered to be the only one, is the APC gene mutation path followed by an alteration of the wnt signaling cascade.

History

There is no reliable information that colorectal cancer occurs in the prehistoric period. However, this cannot be considered as evidence that colorectal cancer or other tumors do not occur. In fact, soft tissues are preserved as a source for research in the field of historical anthropology or even paleontology only very rarely. Even metastatic bones are more prone to faster decomposition, so preserved traces of metastatic skeletal involvement are relatively rare.[1]

Sources from historical periods are greatly complicated by the fact that the basic tool of physicians of various historical epochs was an external description. Cancer in the modern sense of the word was not usually defined, it could be classified as swelling together with abscesses or between ulcerations together with some infections. From antiquity to the Middle Ages, Galen's theory persisted that the tumor was a local urban of black bile.[1] Only the work of A. Vesalia (1514-1564) and G. B. Morgagni (1681-1771) with a thorough description of tumors questioned the humoral theory and created space for new speculative theories, such as Paracelsus's (1493-1541) theory of mineral occupation from environment or Le Dran's (1685-1770) theory of the lymphogenic origin and spread of tumors. Uncertainties about the origin of tumors have been linked to a number of speculative treatments. The speculative theories about the nature of tumors have not yet prevented modern physicians from using relatively vigorous and dangerous procedures consisting, for example, in the application of toxic substances, such as mercury. In response to the results of such therapeutic efforts, the opposite extremes of the administration of biologically practically inert substances [2] have, of course, also gained popularity. Even in spite of mostly unsuccessful interventions, there have sometimes been relatively sharp conflicts of opinion between supporters of various theories and therapeutic approaches, including public promotion of their approach and attacks on the other side. The clash of proponents of (not only) venereal mercury therapy and proponents of herbal juice and extract therapy is relatively well known. [2][3]

The discovery that tumors are cellular is associated with the work of J. P. Müller (1801 - 28 April 1858) and Th. Schwann (1810-1882) from the end of the first half of the 19th century. The theory describing the terms used today, initiation, growth, local spread and metastatic spread, formulated in 1865 by C. Thiersch (1822-1895), H. W. G. von Waldayer-Hartz (1836-1921), supported this therapy with strong evidence.[2]

The oldest probable description of colorectal cancer in medieval Europe appears in 9th-century Irish texts and 10th-century Saxon texts. The description apparently corresponds to a tumorous obstruction of the large intestine.[2]

One of the oldest surviving descriptions from medieval Europe, which certainly captures colorectal cancer, including a description of the tumor itself and its manifestations and prognosis, was left by the English surgeon John of Arden in the 14th century. Among other things, the author mentions that he saw many people who died of the disease. However, he had never seen or cured anyone of the disease.[2]

The first therapy with the hope of therapeutic success was a radical surgical resection of the affected section of the intestine. The first successful resection of the rectal tumor was performed in 1829 by J. Lisfranc (1790-1847). Rectal cancer surgery became more widespread at the beginning of the 20th century, mainly due to a significant reduction in postoperative mortality. Even in a small proportion of patients who underwent the procedure, about 90% of patients relapsed. With the gradual improvement of technique and scope of performance, perioperative mortality was already 6% in the 1930s and five-year survival increased to 65%.[2] In 1954, W. H. Cole published a work demonstrating that tumor cells may appear in the portal blood of a operated patient during surgery; this finding gradually led to the introduction of the "no touch" concept in colon and rectal surgery.[4] Work safely demonstrating that extending performance to mesorectal fat improves patient survival was not published until R. J. Heald and J. D Ryall.[2]

The discovery of both X-rays and radioactivity, and in particular the discovery that ionizing radiation inhibits cell growth, led to the use of these modalities as supportive therapies as early as the beginning of the 20th century. However, the original methods of application did not significantly affect the survival of patients.[2]

The discovery that mustard gas can inhibit hematological malignancies has also led to attempts to treat colorectal cancer with mustard gas-derived substances (the first alkylating cytostatics). The results of these experiments were not encouraging, colorectal cancer is only slightly sensitive to the effects of alkylating cytostatics. In 1957, fluorouracil was introduced as a representative of a new class of cytostatics (antimetabolites), which proved to be very effective in the treatment of colorectal cancer.[2]


Epidemiology

[[Soubor:Colon and rectum cancers world map - Death - WHO2004.svg|thumbnail|300px|Breakdown of countries by standardized colorectal cancer mortality, WHO 2004.|link=https://www.wikiskripta.eu/w/Soubor:Colon_and_rectum_cancers_world_map_-_Death_-_WHO2004.svg]]

Spread

It is estimated that more than one million new patients worldwide appear each year, with approximately one third of patients dying from the disease.[5] According to analyzes at the turn of the 19th and 20th centuries, untreated colorectal cancer ends in death within an average of about two years from the onset of symptoms, with more than 60% of patients dying within two years without anticancer treatment except palliative care; exceptionally, the patient's survival has been observed for many years.[6][7] In comparison with the current results, it can be clearly stated that the prognosis of treated patients is significantly better than patients without cancer therapy.

Together with Slovakia, Hungary, Israel and New Zealand, the Czech Republic is one of the countries with the highest incidence of colorectal cancer.[8]

According to GLOBOSCAN 2012, the age-standardized incidence and mortality are[9]

sex age-standardized incidention (per 100 thousand) age-standardized mortality
male 54,0 22,6
female 27,1 9,9
both sexes 38,9 15,4

These data refer to an age-standardized population, allowing international comparisons between populations with different age structures. The actual incidence of colorectal cancers in the Czech Republic in 2011 was 38.36 cases per 100 thousand, mortality 16.46 per 100 thousand residents. [10] Although the incidence is on the rise, mortality is relatively stable over the long term. The proportion of individual clinical stages does not change much over time, so stable mortality with increasing incidence is more indicative of increasing availability and quality of medical care. [8]

Risk factors

Most cases of colorectal cancer occur sporadically. The main risk factors are:[5]

  • Demographic factors:
    • age,
    • male gender.
  • Environmental factors:
    • red meat intake,
    • high fat diet
    • sedentary lifestyle,
    • smoking,
    • alcohol.
  • History of diseases:
    • history of colorectal polyps,
    • history of colorectal cancer,
    • diabetes mellitus,
    • idiopathic intestinal inflammation.

Genetic syndromes

Some genetic syndromes may be associated with a greater or lesser risk of developing colorectal cancer. The age of the manifestation may vary. While, for example, on the basis of familial adenomatous polyposis, colorectal cancer develops at a young age, milder forms of Lynch syndrome can lead to colorectal cancer at a relatively old age.

The most common genetic syndromes associated with colorectal cancer:

Pathology

Molcular pathology

From a molecular point of view, colorectal cancer is a group of several different diseases in which there is some overlap. This is because a malignant reversal can occur due to several mutation sequences. Five types of colorectal cancer can be distinguished based on molecular characteristics. Individual types differ according to CpG islet hypermethylation (CIMP), microsatellite instability (MSI, MSS = stable), chromosomal aberrations and characteristic mutations:[11]

  • Type 1 CIMP-H, MSI-H, BRAF mutations, chromosomes stable. It accounts for about 12% of colorectal cancers, also referred to as sporadic MSI-H colorectal cancer. It arises on the basis of serous lesions.
  • Type 2 CIMP-H, MSI-L or MSS, BRAF mutations, chromosomes stable. It represents about 8% of colorectal cancers, it arises on the basis of serial lesions.
  • Type 3 CIMP-L, MSI-L or MSS, KRAS mutations, chromosomal instability. It represents about 20% of colorectal cancers. It arises on the basis of serous lesions and classic adenomas.
  • Type 4 CIMP-negative, MSS, chromosomes unstable. It arises on the basis of a congenital or acquired mutation of APC or MUTYH, it arises from classical adenomas. It represents about 57% of colorectal cancers.
  • Type 5 CIMP-negative, MSI-H, chromosomes are stable. It is caused by Lynch syndrome, sometimes referred to as familial MSI-H cancer. It represents about 3% of colorectal cancers.

In sporadic colorectal cancers, three major areas of change in cell biology can be distinguished, and there are three ways to divide them:[12]

  1. chromosomal instability pathway,
  2. microsatellite instability pathway,
  3. hypermethylation of CpG isles pathway.

Chromosomal instability pathway

Chromozomální nestabilita je nejčastější příčina genové nestability kolorektálních karcinomů, lze prokázat u 65–70 % všech případů. Zahrnuje širokou změnu chromozomálních změn, jejichž důsledkem může být jak amplifikace některých genů tak i ztráta heterozygozity jiných genů. Nejčastěji se vyskytují následující změny v následujících lokalizacích:

  • Extensive gain: 7, 8q, 13q, 20, X.
  • Extensive loss: 1, 4, 5, 8p, 14q, 15q, 17p, 18, 20p, 22q.
  • Focal gain / loss in the field of genes: VEGF, MYC, MET, LYN, PTEN.
  • Numerous allele losses: 1, 5, 8, 17, 18.
  • Whole chromosome loss: 18.

The most significant molecular changes at the single gene level are the APC, MCC and K-ras mutations, at the level of the larger regions the cleats at 5q, 8p, 17p and 18q.[12]

APC

APC is a tumor suppressor gene whose innate mutation is responsible for most cases of familial adenomatous polyposis. The product of the gene is a multifunctional 310 kDa protein involved in epithelial homeostasis mainly by regulating the degeneration of cytoplasmic β-catenin and thus a key part of the wnt signaling cascade. APC is also involved in cell cycle control and microtubule stabilization.

MCC

MCC is a gene whose product is involved in cell cycle arrest in DNA damage and apparently interferes with the Wnt signaling cascade. In colorectal cancers, its expression is often suppressed by promoter hypermethylation, direct mutations are not common.

TP53

TP53 is a tumor suppressor gene whose product, p53, is a transcription factor that plays a central role in regulating cell cycle progression depending on the detection of DNA damage. Mutation of the TP53 gene is a relatively characteristic event in the late tumorigenesis of colorectal cancer.

K-ras

K-ras is an oncogene whose product is a membrane protein with GTPase activity involved in signaling in a number of signaling cascades. The mutation leads to a permanent activation, which in turn leads to an increase in the transcriptional activity of a number of genes, in particular BCL-2, H2AFZ, RAP1B, TBX19, E2F4 and MMP1. Numerous pathways regulating cell growth, proliferation, apoptosis, cytoskeletal organization, and cell motility are thus affected by increased K-ras activity. The K-ras mutation is thought to play a crucial role in the transition from adenoma to cancer.

Loss of 5q

Loss of 5q occurs in 20-50% of sporadic colorectal cancers. The APC and MCC genes are mainly found in this area.

Loss at 8p

Loss at 8p occurs in approximately 50% of colorectal cancers. Proof of loss is more common in the advanced stage, this aberration is less common in the earlier stages. Loss in the 8p region increases the metastatic potential of colorectal cancer. Candidate genes are found mainly in the 8p21 and 8p22 regions.

Loss at 17p

Losses in the 17p region occur in 75% of colorectal cancers, but do not occur in adenomas. This region contains the p53 gene.

Loss at 18q

The long arm of chromosome 18 contains a number of tumor suppressor genes as well as genes involved in the control of cell adhesion and migration.

Microsatellite instability pathway

Microsatellites are short repetitive sequences that occur throughout the genome. Their instability is a "macroscopic" manifestation of a "mismatch repair" system failure. At the transcriptional level, microsatellite instability is manifested by a frameshift. Carcinogenesis associated with microsatellite instability is associated with mutations in a number of mismatch repair system genes: MSH2, MLH1, MSH6, PMS2, MSH3, PMS1 and Exol; germline mutations in some of these genes cause Lynch syndrome.

Since 1997, five loci have been recommended for microsatellite instability analysis: the mononucleotide repetitive sequences BAT25 and BAT26 and the dinucleotide repetitive sequences D5S346, D2S123 and D17S250. According to the evidence of instability, there are three phenotypes of microsatellite instability:

  • MSI-high (MSI-H) - instability in at least two of these loci,
  • MSI-low (MSI-L) - instability in just one locus,
  • MSS - all five tested loci are stable.

Alternatively, BAT25, BAT26, NR21, NR24 and NR27 loci are used, the evaluation of which appears to be more consistent with mismatch reapirus gene disorders.

Another possibility for molecular evaluation is the analysis of the instability of selected tetranucleotide repetitive sequences. The phenotype with increased instability is called EMAST, which corresponds to the suppression of MSH3 gene expression.

MSI-H tumors are often diploid, loss of heterozygosity occurs less frequently, and p53 and K-ras mutations are less common. The V600E mutation of the BRAF gene is common in sporadic MSI-H tumors. Inactivating mutations in the TGFβRII receptor gene (TGFBR2 gene) are very common in tumors with MSI; this inactivation leads to the elimination of antiproliferative signaling by the cytokine TGF-β.[12] Mutations inactivating the antiproliferative cascade beginning with the TGFβRII receptor are considered to be a significant step from adenoma to high-grade dysplasia resp. to cancer.[13]

Hypermethylation of CpG isles pathway

A characteristic feature of this pathway are epigenetic changes, specifically cytosine hypermethylation in CpG sequences. Hypermethylation in the promoter regions of tumor suppressor genes is pathogenetic, which induces a decrease in their expression. Hypermethylation usually occurs in the promoter sequences of the APC, MCC, MLH1 and MGMT genes. It should be noted that it is not yet clear what is the cause of aberrant hypermethylation.[12][13]

Evaluation of CpG sequence methylation in five marker genes is used to analyze hypermethylation: CACNA1G, IFG2, NEUROG1, RUNX3, SOCS1. There are two levels of CpG islet methylation:

  • CIMP-high (CIMP-H) - evidence of methylation in at least three markers
  • CIMP-low (CIMP-L) - evidence of methylation in less than three markers.

The CIMP-H phenotype is often associated with the BRAF mutation.[12]

Influence of growth factors

Growth factors from the environment also contribute to a certain extent to the origin and growth of first adenoma and later also carcinoma.

Prostaglandins

Prostaglandin E2 (PGE2) is very strongly associated with colorectal cancer. Cyclooxygenase COX-2 is involved in its synthesis, and increased COX-2 activity has been shown in about two-thirds of tumors. Degradation of PGE2 is performed by 15-prostaglandin dehydrogenase, about 80% of tumors have a defect in this enzyme.[13]

EGF

EGF (Epidermal Growth Factor) is a cytokine that is involved in growth signaling. EGFR blockade is one of the possible therapeutic modalities for advanced colorectal cancer, the blockade is ineffective in tumors with activating mutations in the EGFR pathway, especially mutations KRAS, BRAF and the p110 phosphatidylinositol kinase (PI3K) subunit.[13]

VEGF

VEGF (Vascular Endothelial Growth Factor) is a cytokine that stimulates vascularization during growth and neovascularization of healing tissues. It is also used in vascularization and tumor growth, its blockade is one of the possible therapeutic modalities of advanced colorectal cancer.[13]

Macroscopic appearance

More than half of cancers occur in rectosigma, and right-sided tumors are more common in elderly patients and in patients with diverticulosis. Multicentre incidence is uncommon, with reported incidence between three and six percent.

Macroscopically, colorectal cancer can present as a polyposis (exophytic) or as a hollow (exulcerated) lesion. Polypose carcinoma protrudes above the level of the mucosa, its margins are relatively steep and it is usually well defined macroscopically. The excavated carcinoma has elevated margins, and is indented and exulcerated in the middle. A variant of excavated cancer is flat (infiltrating) cancer. In the right colon, the tumor may surround the wall (carcinoma anulare) and lead to stenosis.

Metastatic colorectal cancer spreads mainly through the lymphatic route to regional lymph nodes. Due to the arrangement of lymphatic vessels in the mesentery, lymphogenic metastasis can be detected quite often even in the nodes seemingly draining areas of the intestine far from the tumor. Hematogenous metastases usually occur in advanced disease. The liver is primarily affected, and other sites are uncommon. If the tumor grows into the peritoneum, porogenic metastases after the peritoneum are also possible.

Histopathology

Histologically, colorectal cancer is in more than 90% of cases adenocarcinoma, other histological types are:

  • neuroendocrine tumor,
  • squamous cell carcinoma,
  • adenosquamous carcinoma,
  • spindle cell carcinoma,
  • undifferentiated carcinoma.

The basis for adenocarcinoma grading is the evaluation of glandular formation:

  1. Well-differentiated adenocarcinoma is characterized by glandular formation accounting for more than 95% of the tumor. This grade represents about 10% of all colorectal adenocarcinomas.
  2. Moderately differentiated adenocarcinoma is characterized by glandular formation accounting for 50-95% of the tumor. This grade is the most common, accounting for about 70% of all colorectal adenocarcinomas.
  3. Poorly differentiated adenocarcinoma is characterized by the fact that the glandular formation makes up less than 50% of the tumor. This grade represents about 20% of all colorectal adenocarcinomas.


Three-level grading is burdened by a relatively large share of subjective evaluation. Therefore, some authors recommend grading with only two levels, which has less variability of evaluation between different pathologists and which should also have a better informative value of the forecast pages:

  1. Low grade adenocarcinoma means that glandular formations make up at least 50% of the tumor.
  2. High grade adenocarcinoma means that the glandular formation makes up less than 50% of the tumor.

This grading can only be used for conventional adenocarcinoma; in the case of its histological changes, even a high-grade appearance can be associated with more prognostic behavior.[14]


Identifying signs of invasion is key to assessing biological behavior. If muscularis mucosae is trapped in the mount, which may not be the rule for endoscopically collected specimens, it should be assessed whether it is damaged by the tumor. Invasive carcinoma grows through the muscular mucosae into the submucosa, where it may be closely related to the submucosal vessels.

Another important sign of invasive behavior is desmoplasia resp. desmoplastic reaction, a type of ligament proliferation induced by invasive tumor growth. The desmoplastic reaction is characterized by the proliferation of spindle cells that surround the tumor gland.

A unique and relatively common feature of colorectal cancer is necrotic detritus in the lumen of the tumor glands, sometimes referred to as dirty necrosis. These can also occur in metastases, so they are an important guide in determining the origin of tumors of unknown origin.

In the case of colorectal cancer, only submucosal invasive cancer should be designated as invasive carcinoma, i.e. the pT1 stage. Furthermore, tumors growing into the muscularis mucosae without growth have little potential to establish distant metastases or lymph node metastases. The biological reason for such behavior of the tumor growing into the muscularis mucosae is not exactly known, it is assumed that a relatively poor network of lymphatic vessels plays a role. According to the AJCC Cancer Staging Manual (7th edition), the tumor that grows highest to the muscularis mucosae should be referred to as carcinoma in situ (pTis), and some authors even recommend high-grade dysplasia so that the terminology does not give the impression that further surgery is needed.[14]

Colorectal adenocarcinoma can have several histological variants:

  • mucinous adenocarcinoma,
  • adenocarcinoma with ring-shaped cells,
  • medullary adenocarcinoma,
  • micropapillary adenocarcinoma,
  • seratic adenocarcinoma,
  • cribriform comedon adenocarcinoma,
  • adenosquamous adenocarcinoma,
  • spindle cell adenocarcinoma,
  • undifferentiated adenocarcinoma.
Mucinous adenocarcinoma

A defining feature of mucinous adenocarcinoma is that at least 50% of the tumor volume is extracellular mucin. Carcinomas that contain less mucin but still more than 10% by volume are referred to as adenocarcinoma with mucinous differentiation or adenocarcinoma with mucinous properties.

Histologically, mucinous adenocarcinomas usually form relatively large glandular formations with pools of extracellular mucin. Different numbers of individual tumor cells may be present, and seal ring-shaped cells may be captured.

The biological behavior of mucinous adenocarcinoma is uncertain. Lynch syndrome has a microsatellite phenotype, MSI-H, and its behavior can be assessed as low-grade. On the other hand, when mucinous adenocarcinoma is associated with the microsatellite phenotype of MSS, its biological behavior is clearly more aggressive.[14]

Adenocarcinoma with ring-shaped cells

A defining feature of seal ring-shaped cell adenocarcinoma is that at least 50% of the tumor cells have the features of seal ring-shaped cells. A characteristic feature of the seal ring-shaped cells is the bulky central vacuole filled with mucus and pushing the nucleus to the edge of the cell. Infiltrative growth or uptake of free cells in extracellular mucin pools is common. Seal-ring cell adenocarcinoma usually behaves like a high-grade tumor, but low-grade behavior can be expected if the MSI-H phenotype is demonstrated.[14]

Medullary adenocarcinoma

Medullar adenocarcinoma is characterized by strips of epithelioid cells with bulky vesicular nuclei, distinct nucleoli and abundant cytoplasm. Tumor infiltration by abundant lymphocytes is relatively common. Cell differentiation is usually poor, cells can be undifferentiated. The microsatellite phenotype MSI-H is relatively common. Despite the usually poor differentiation, the prognosis is relatively good.[14]

Clinical management

Clinical picture

Colorectal cancer, especially right-sided cancer, is often clinically silent in the early stages and can only be detected at screening. Typical manifestations are bleeding into the colon and changes in bowel movements (eg alternating diarrhea and constipation). Chronic blood loss can lead to anemia. Another relatively common manifestation is non-specific and rather vague abdominal pain. On the left side and less often in the colonic ascendant and in the cecum, colonic obstruction may be one of the first manifestations of the tumor.

Screening

Early detection of colorectal cancer is a factor that significantly improves the patient's prognosis. The aim of screening is not only to detect an existing malignancy, but also premalignant changes. The optimal timing of individual screening methods is a matter of ongoing research.[5]

Occult bleeding

Fecal Occult Blood (FOB) is a condition in which there is an admixture of blood in the stool that exceeds the physiological blood loss to the stool. The test is relatively cheap, not burdensome, but it is less sensitive. Nevertheless, its regular implementation every two years has the potential to reduce colorectal cancer-related mortality by up to 16%.[5]

Sigmoidoscopy

Examination of the rectosigma with a flexible 60 cm sigmoidoscope allows the detection of about 60% of colorectal cancers. The advantage over colonoscopy is easier preparation of the patient, an enema is sufficient for the procedure, and also a lower risk of complications.[5]

Colonoscopy

Colonoscopy is the gold diagnostic standard because, in addition to overlooking the mucosa of virtually the entire colon, it also allows for sampling of suspected lesions and the excretion of premalignant lesions.

Virtual colonoscopy

Virtual colonoscopy (CT colonography) may be suitable for assessing the exact location of the tumor, especially in cases where colonoscopy cannot be performed. The disadvantage is the radiation exposure of the patient.

Capsule colonoscopy

Capsule colonoscopy is a screening method that involves swallowing a capsule capable of taking pictures of the digestive tract. The main advantage compared to conventional colonoscopy is higher patient comfort (and thus higher compliance) and lower risk of complications, the disadvantage is the inability to take a sample for histological examination and the time required to evaluate the record. If a suspected lesion is detected, a classic colonoscopy should be performed.[15]

Molecular biological tests

In the research phase, screening tests are based on the analysis of DNA in blood or stool.[5]

Diagnostics

The diagnosis is determined on the basis of sigmoidoscopic resp. colonoscopy with histological examination. The newly diagnosed tumor should be followed by additional tests (if not already performed):[5]

  • physical exam,
  • complete colonoscopy to rule out metachronous cancer elsewhere in the colon,
  • CT examination of the lungs, abdomen and pelvis to detect possible metastatic disease.

In rectal cancer, MR examination is more effective, especially with regard to assessing the spread of the tumor into the mesorectum and thus to assess the appropriate extent of resection. In the case of early tumors, endoscopic ultrasound can be used to assess invasion. Both of these methods have their advantages and limitations. Ultrasound examination is advantageous for the examination of the liver, and the use of ultrasound contrast agents seems promising. Peritoneal carcinomatosis remains a diagnostic problem.[5]

ICD

The primary localization is determined by several ICD-10 codes
C18, C19, C20, C21
  • C18: Malignant neoplasm of colon.
    • C18.0: Cecum and ileocecal valve.
    • C18.1: Appendix.
    • C18.2: Colon ascendens.
    • C18.3: Hepatic flexure
    • C18.4: Transverse column.
    • C18.5: Linear flexure.
    • C18.6: Descendant Colon.
    • C18.7: Colon sigmoid.
    • C18.8: The lesion extends beyond the intestine.
    • C18.9: Not specified.
  • C19: Malignant neoplasm of rectosigmoid junction.
  • C20: Malignant neoplasm of rectum.
  • C21: Malignant neoplasm of anus and anal canal.
    • C21.0: Anus, unspecified.
    • C21.1: Anal canal.
    • C21.2: Klocogenic zone.
    • C21.8: The lesion extends beyond the rectum, anus and anal canal.

Staging

TNM classification of colorectal cancer

Primary tumor size

TX the primary tumor could not be evaluated
T0 primary tumor not found
Tis intraepithelial growth or invasion of the lamina propria
T1 invasion of submucosa
T2 invasion of the muscular propria
T3 invasion through the muscularis mucosae into the surrounding tissues
T4a penetration of the visceral peritoneum surface
T4b penetration into surrounding organs
Lymph node involvement
NX lymph nodes could not be evaluated
N0 lymph nodes without metastases
N1 metastases in one to three regional nodes
N1a metastasis in one regional node
N1b metastases in two to three regional nodes
N2 metastases in four or more regional nodes
N2a metastases in four to six regional nodes
N2b metastases in seven or more regional nodes
Distant metastases
MX distant metastases could not be evaluated
M0 without evidence of distant metastases
M1 distant metastases
M1a distant mesastases in one anatomical locality
M1b distant metastases in multiple anatomical localities

At least 12 lymph nodes should be examined for adequate lymph node involvement.[5] Technical conditions sometimes do not allow this, and therefore a sign of worse pathology work is considered only if the average number of examined nodes in a larger number of resections drops significantly below 12.

Clinical stages
  • stage 0: TisN0M0
  • stage I: T1N0M0 or T2N0M0
  • stage IIA: T3N0M0
  • stage IIB: T4N0M0
  • stage IIIA: T1N1M0 or T2N1M0
  • stage IIIB: T1N2M0, T2N2M0 or T3N1M0
  • stage IIIC: T3N2M0, T4N1M0, T4N2M0
  • stage IVA: any T and N, distant metastases in one anatomical locality
  • stage IVB: any T and N, distant metastases in more than one anatomical locality
Dukes classification
  • stage A: tumor bounded by the intestinal wall
  • stage B: the tumor invades or penetrates serosis
  • stage C: lymph node involvement
    • stage C1: positive pericolic lymph nodes
    • stage C2: positive perivascular nodes
  • stage D: distant metastases

Typing a grading

Typing and grading are governed by the WHO classification of colorectal tumors (incl. ICD-O codes, abbreviated):[16]

  • Carcinomas:
    • adenocarcinoma 8140/3
    • mucinous adenocarcinoma 8480/3
    • seal ring cell carcinoma 8490/3
    • small cell carcinoma 8041/3
    • squamous cell carcinoma 8070/3
    • adenosquamous carcinoma 8560/3
    • medullary carcinoma 8510/3
    • undifferentiated carcinoma 8020/3
  • Carcinoid 8240/3
    • EC cells, serotonin producing neoplasia 8241/3
  • Mixed carcinoid-adenocarcinoma 8244/3
  • Non-epithelial tumors
    • gastrointestinal stromal tumor 8936/1
    • leiomyosarcoma 8890/3
    • angiosarcoma 9120/3
    • Kapisi's sarcoma 9140/3
    • malignant melanoma 8720/3
  • lymphoma

Therapy

Surgical therapy

Surgical therapy is a basic therapeutic modality. If it is chosen, it is appropriate to perform a sufficiently radical performance, incl. lymphadenectomy. The resection margin should be at least 5 cm from the tumor if possible; some authors consider a distal edge of the rectal resection of 2 cm to be sufficient. The extent of resected adipose tissue should be such that at least 12 lymph nodes can be examined. In the case of T4, only a sufficiently large resection "en bloc" can be considered as a resection with intact resection margins. Mechanical contusion of the tumor during resection can spread it, and therefore the technique of surgery is adapted to prevent such spread - the no-touch concept. If the tumor is traumatized during the procedure, adjuvant chemotherapy should be used.[4][5]

For invasive rectal cancer, the method of choice is total mesorectal excision (TME) with adequate circular and distal resection margins and excision of the lower mesenteric lymph nodes. The sphincter-saving procedures are intended for patients in the lower stage of the disease; in the very early stages (T1Sm1), local exicciation can also be considered.[5]

Laparoscopic colectomy is the method of choice for colon tumors. From the oncological point of view, the results of the laparoscopic procedure can be considered identical to the laparotomy procedures, the laparoscopic procedure is more advantageous for the patient.[5]

Resection of liver and lung metastases, if established, significantly increases patient survival. In addition to surgical resection, eg local embolization or radiofrequency ablation is used; these methods increase the number of patients who can be treated for metastases. Neoadjuvant chemotherapy may also target metastases.[5]

Palliative procedures, especially bypass surgery and derivation stoma, are possible for unresectable tumors or tumors of patients not operable for comorbidities. These procedures can improve the patient's quality of life and, in conjunction with appropriate pharmacotherapy, survival.[4]

Radiotherapy

Neoadjuvant radiotherapy allows surgery to be performed at a higher stage in patients at all, but does not in itself affect overall survival.[4]

Pharmacotherapy

Neoadjuvant chemotherapy is usually given with 5-fluorouracil, sometimes combined with radiotherapy.[17]

Adjuvant chemotherapy improves survival in II. stage by a few percent, in III. stage by 15-20%. For this reason, in III. stage of adjuvant chemotherapy is fully indicated. In addition to 5-fluorouracil, oxaliplatin is also used. Biological therapy is not indicated in adjuvant therapy.[17]

Therapy IV. stage is a complex matter, the procedure is chosen according to the patient's condition and the extent of metastatic disability. In addition to cytostatics (5-fluorouracil, oxaliplatin, irinotecan, fluoropyrimidine), biological therapy can also be used if its results can be expected from the results of molecular examination. Currently available:[17]

Prognosis

The prognosis of adenocarcinoma is similar in cancer of the rectum and colon, depending mainly on the clinical stage. Five-year survival is as follows:[5]

  • stage I: 97.1%
  • stage IIA: 87.5%
  • stage IIB: 71.5%
  • stage IIIA: 87.7%
  • Stage IIIB: 75.0% (if N1), 68.7% (if N2)
  • Stage IIIC: 47.3% (T3, N2), 50.5% (T4, N1), 27.1% (T4N2)

In the fourth stage, the prognosis depends on which organs are metastatically affected, what is the extent of the metastatic disability and what is the overall condition of the patient. Overall, however, the prognosis is not very favorable and at this stage colorectal cancer is usually considered incurable in terms of curative therapeutic intent in the choice of therapeutic modalities.[13]

Odkazy

Reference

  1. Jump up to: a b STROUHAL, E. a A. NĚMEČKOVÁ. Trpěli i dávní lidé nádoy? : Historie a paleopatologie nádorů, zvláště zhoubných. 1. vydání. Praha : Karolinum, 2008. ISBN 9788024614816.
  2. Jump up to: a b c d e f g h i MULCAHY, H.E., J. HYLAND a D.P. O'DONOGHUE. From dinosaurs to DNA: a history of colorectal cancer. Int J Colorectal Dis. 2003, vol. 18, no. 3, s. 210-5, ISSN 0179-1958. 
  3. CRAWFORD, K., et al. European Sexualities, 1400-1800. 1. vydání. Cambridge University Press, 2007. 246 s. New Approaches to European History; sv. 38. Kapitola 5 John Burrows and the Vegetable Wars. s. 85–102. ISBN 9780521839587.
  4. Jump up to: a b c d KALA, Z., P. KYSELA a L. OSTŘÍŽKOVÁ, et al. Chirurgická a miniinvazivní léčba kolorektálního karcinomu. Onkologie [online]. 2011, vol. 5, no. 5, s. 270-272, dostupné také z <http://www.onkologiecs.cz/pdfs/xon/2011/05/07.pdf>. ISSN 1803-5345.
  5. Jump up to: a b c d e f g h i j k l m n CUNNINGHAM, D., W. ATKIN a H.J. LENZ, et al. Colorectal cancer. Lancet. 2010, vol. 375, no. 9719, s. 1030-47, ISSN 1474-547X. 
  6. LAZARUS-BARLOW, W.S. a J.H. LEEMING. The natural duration of cancer. Br Med J [online]. 1924, vol. 2, no. 3320, s. 266-7, dostupné také z <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2304825/?tool=pubmed>. ISSN 0007-1447.
  7. WYARD, S.. The natural duration of cancer. Br Med J [online]. 1925, vol. 1, no. 3344, s. 206-7, dostupné také z <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196841/?tool=pubmed>. ISSN 0007-1447. 
  8. Jump up to: a b G. VEPŘEKOVÁ a O. MÁLEK, et al. Epidemiologie, etiologie, screening a diagnostika kolorektálního karcinomu, včetně diagnosticko-terapeutických zákroků na tlustém střevě. Onkologie [online]. 2011, vol. 5, no. 5, s. 261-265, dostupné také z <http://www.onkologiecs.cz/pdfs/xon/2011/05/05.pdf>. ISSN 1803-5345. 
  9. http://gco.iarc.fr/today/fact-sheets-populations
  10. http://www.svod.cz/
  11. JASS, J.R.. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology.. 2007, vol. 50, no. 1, s. 113-30, ISSN 0309-0167. 
  12. Jump up to: a b c d e In sporadic colorectal cancers, three major areas of change in cell biology can be distinguished, and there are three ways to speak:
  13. Jump up to: a b c d e f MARKOWITZ, S.D. a M.M. BERTAGNOLLI. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med [online]. 2009, vol. 361, no. 25, s. 2449-60, dostupné také z <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843693/?tool=pubmed>. ISSN 1533-4406. 
  14. Jump up to: a b c d e FLEMING, M., S. RAVULA a S.F. TATISHCHEV, et al. Colorectal carcinoma: Pathologic aspects. J Gastrointest Oncol [online]. 2012, vol. 3, no. 3, s. 153-73, dostupné také z <http://jgo.amegroups.com/article/view/410/html>. ISSN 2219-679X. 
  15. M. VOŠKA a G. VEPŘEKOVÁ, et al. Kolonická kapsle v kontextu screeningu kolorektálního karcinomu. Onkologie [online]. 2012, vol. 6, no. 3, s. 165-168, dostupné také z <http://www.onkologiecs.cz/pdfs/xon/2012/03/08.pdf>. ISSN 1803-5345. 
  16. HAMILTON, Stanley R. a Lauri A. AALTONEN. WHO Classification of Tumours : Pathology and Genetics of Tumours of the Digestive Syste, [online] . 1. vydání. Lyon : IARC Press, 2000. Dostupné také z <http://publications.iarc.fr>. ISBN 92-832-2410-8.
  17. Jump up to: a b c a J. HALÁMKOVÁ. Systémová protinádorová léčba kolorektálního karcinomu. Onkologie [online]. 2013, vol. 7, no. 4, s. 188-189, dostupné také z <http://www.onkologiecs.cz/pdfs/xon/2013/04/07.pdf>. ISSN 1803-5345. 

Virtual preparations

Related articles

Literature

  • ROSAI, Juan. Ackerman's Surgical Pathology. 8th edition. St. Louis, MO: Mosby, 1996. vol. 1. ISBN 0-8016-7004-7.
  • HAMILTON, Stanley R. and Lauri A. AALTONEN. WHO Classification of Tumors: Pathology and Genetics of Tumors of the Digestive System, [online]. 1st edition. Lyon: IARC Press, 2000. Also available from <http://publications.iarc.fr>. ISBN 92-832-2410-8.
  • POVÝŠIL, Ctibor and Ivo ŠTEINER, et al. Special pathology. 2nd edition. Prague: Galén: Karolinum, 2007. ISBN 978-80-7262-494-2.

External links

  • Dušek, L., Zavoral, M., Májek, O., Suchánek, Š., Mužík, J., Pavlík, T., Šnajdrová, L., Gregor, J. Kolorektum.cz – Program kolorektálního screeningu v České republice [online]. Masarykova univerzita, Brno, 2014. Dostupné z WWW: [1]. ISSN 1804-0888.
  • VYZULA,., et al. Modrá kniha České onkologické společnosti [online] . 19. vydání. 2014. Dostupné také z <https://www.linkos.cz/files/modra-kniha/12.pdf>. Doporučení České onkologické společnosti ČLS JEP. ISBN 978-80-86793-35-1.
  • MARKOWIT.D. a M.M. BERTAGNOLLI. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med [online]. 2009, vol. 361, no. 25, s. 2449-60, dostupné také z <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843693/?tool=pubmed>. ISSN 1533-4406.