Tumor suppressor gene: Difference between revisions
Feedback

From WikiLectures

(original text was from wikiskripta tumor suppressor gene (https://www.wikiskripta.eu/index.php?curid=5498))
(original text from wikiskripta tumor suppressor genes (https://www.wikiskripta.eu/index.php?curid=5498))
Line 1: Line 1:
__NOTOC__
__NOTOC__


'''Tumor supresorové geny''' (zvané taky antionkogeny nebo recesivní [[(Proto)onkogeny|onkogeny]]) mají zásadní úlohu v maligním procesu. Jejich produkty regulují [[Mitóza|buněčné dělení]]. K poruše kontroly [[Buněčný cyklus|buněčného cyklu]] vede chybění obou [[alely|alel]] určitého supresorového [[gen]]u (např. delecí), změna jejich struktury (např. bodovou [[Mutace|mutací]]) nebo inaktivace jimi kódovaného proteinu. To všechno může mít za následek maligní zvrat buňky.
'''Tumor suppressor genes'''' (also called anti-oncogenes or recessive [[(Proto)oncogenes|oncogenes]]) have an essential role in the malignant process. Their products regulate [[Mitosis|cell division]]. The loss of both [[alleles|alleles]] of a certain suppressor [[gene]] (e.g. deletion), a change in their structure (e.g. point [[Mutation|mutation]]) leads to a disorder of [[Cell cycle|cell cycle]] control ) or inactivation of the protein encoded by them. All this can result in a malignant transformation of the cell.
==Obecně==
==General==
[[Soubor:Rb1mutace.png|náhled|vpravo|400px|Princip dvouzásahové teorie u retinoblastomu]]
[[File:Rb1mutace.png|preview|right|400px|The principle of the two-hit theory in retinoblastoma]]
Mutace v tumor supresorových genech mají '''recesivní charakter.''' Na rozdíl od onkogenů proteiny kódované antionkogeny mají antiproliferační účinek, podporují diferenciaci a apoptózu.
Mutations in tumor suppressor genes have a ``recessive character.'' Unlike oncogenes, proteins encoded by anti-oncogenes have an antiproliferative effect, promote differentiation and apoptosis.


V každé somatické buňce je asi 40 tumor supresorových genů. Aby se staly tumorigenními, musí být mutovány obě jejich alely proto název recesivní onkogeny. S tím souvisí tzv. '''dvouzásahová teorie''' (poprvé formuloval ''Knudson'', když vysvětloval vznik vzácného hereditárního retinoblastomu). Na rozdíl od mnohem častějšího sporadického retinoblastomu, kde se jedná o náhodné mutace jedné a posléze druhé alely v buňce sítnice, je u hereditární formy jedna mutovaná alela zděděna. Příslušný jedinec je [[heterozygot]], u něhož se zděděná nádorová predispozice zatím neprojevuje. Dojde-li však k mutaci/eliminaci druhé alely, iniciuje se rozvoj nádorového klonu buněk sítnice.
There are about 40 tumor suppressor genes in each somatic cell. To become tumorigenic, both of their alleles must be mutated hence the name recessive oncogenes. This is related to the so-called ''double hit theory'' (first formulated by ''Knudson'' when explaining the occurrence of rare hereditary retinoblastoma). In contrast to the much more common sporadic retinoblastoma, where there are random mutations of one and then the other allele in the retinal cell, in the hereditary form one mutated allele is inherited. The relevant individual is a [[heterozygote]] in whom the inherited tumor predisposition is not yet manifested. However, if the second allele is mutated/eliminated, the development of a tumor clone of retinal cells is initiated.


Tomuto procesu se říká '''ztráta heterozygozity''' (LOH – loss of heterozygozity).
This process is called ``loss of heterozygosity'' (LOH – loss of heterozygosity).


==pRB==
==pRB==
[[Soubor:RB_E2F.jpg|náhled|350px|Komplex CDK4/Cyklin D fosforyluje komplex pRB/E2F a tím uvolňuje transkripční faktor E2F, který dále umožní přechod buňky z fáze G1 do S]]
[[File:RB_E2F.jpg|preview|350px|The CDK4/Cyclin D complex phosphorylates the pRB/E2F complex and thereby releases the E2F transcription factor, which further enables the cell to transition from G1 to S phase]]
Prvně objevený tumor supresorový gen byl '''nazván retinoblastomový gen (''RB1'' gen)''' a jeho produkt '''RB-protein (pRB)'''. Vyskytuje se v každé buňce, kde reguluje buněčný cyklus dělení.
The first discovered tumor suppressor gene was '''called the retinoblastoma gene (''RB1'' gene)'''' and its product '''RB-protein (pRB)'''. It occurs in every cell, where it regulates the cell division cycle.


'''Retinoblastomový gen''' (''RB1'') a další tumor supresorový gen '''TP53''', resp. jejich produkty, fungují jako jakési brzdy buněčné proliferace. ''RB1'' negativně reguluje důležitý [[Transkripční faktory|transkripční faktor]] '''E2F'''. Delece '''''RB1'' genu''', k níž dochází při vzniku hereditárního retinoblastomu, nebo sekvestrace jeho proteinového produktu v přítomnosti adenovirového proteinu E1A nebo proteinu E7 (při infekci virem lidského papilomu) navodí odblokování suprese E2F. Naproti tomu p53 působí tím, že podporuje expresi p21/CIP, který je mohutným inhibitorem kinas regulujících buněčný cyklus (cyklin dependentní kinasy).
'''Retinoblastoma gene''' (''RB1'') and another tumor suppressor gene '''TP53'', respectively. their products act as a kind of brake on cell proliferation. ''RB1'' negatively regulates the important [[Transcription factors|transcription factor]] '''E2F'''. Deletion of the ``RB1'' gene, which occurs in hereditary retinoblastoma, or sequestration of its protein product in the presence of adenoviral protein E1A or protein E7 (in human papillomavirus infection) induces unblocking of E2F suppression. In contrast, p53 acts by promoting the expression of p21/CIP, which is a potent inhibitor of cell cycle-regulating kinases (cyclin-dependent kinases).


Ztráta regulující funkce '''Rb-genu''' v buněčném cyklu nebo nadměrná exprese c-myc vedou ke zvýšené proliferaci, ale také ke zvýšené [[Apoptóza|apoptóze]] postižených buněk. Virogenní produkty, jako je '''E1A''' (infekce adenovirem), '''T121-antigen''' (z SV-viru) nebo '''E7''' (z lidského papillomaviru), se vážou na Rb a mají pak podobný účinek. V tomto stádiu počet transformovaných buněk zatím nevzrůstá. Avšak další genetická změna, způsobující ztrátu '''p19ARF''', mutaci '''p53''' anebo nadměrnou expresi '''bcl-2''', vede ke zvýšené proliferaci a ke snížené apoptóze. Přispívají k tomu genové produkty jako E1b (z adenoviru), velký [[antigen]] z SV-viru a E-6 antigen z papillomaviru, které se váží na protein '''p53'''. Apoptóza, respektive tendence k jejímu snížení, má klíčový význam pro rozvoj tumorigeneze.
Loss of the regulatory function of the Rb gene in the cell cycle or overexpression of c-myc leads to increased proliferation, but also to increased [[Apoptosis|apoptosis]] of the affected cells. Virogenic products such as '''E1A''' (adenovirus infection), '''T121-antigen'''' (from SV-virus) or '''E7''' (from human papillomavirus) bind to Rb and then have a similar effect. At this stage, the number of transformed cells does not increase yet. However, another genetic change, causing loss of p19ARF, mutation of p53, or overexpression of bcl-2, leads to increased proliferation and reduced apoptosis. Contributing to this are gene products such as E1b (from adenovirus), large [[antigen]] from SV-virus and E-6 antigen from papillomavirus, which bind to the '''p53''' protein. Apoptosis, or the tendency to decrease it, is of key importance for the development of tumorigenesis.


==p53==
==p53==
Tumor supresorový '''gen ''TP53''''', který kóduje protein p53, je klíčovým regulačním faktorem, který monitoruje poškození DNA. Inaktivace p53 bývá jedním z prvních kroků, který vede k maligní transformaci při vývoji řady nádorových onemocnění. Pacienti s [[Syndrom Li-Fraumeni|Li-Fraumeniho syndromem]] mají obvykle jednu mutantní alelu v zárodečných buňkách a tím i zvýšené riziko vzniku [[sarkom]]ů, [[leukemie]] a [[ca prsu|karcinomu mléčné žlázy]].
The tumor suppressor gene TP53, which encodes the protein p53, is a key regulatory factor that monitors DNA damage. Inactivation of p53 is usually one of the first steps that leads to malignant transformation in the development of a number of cancer diseases. Patients with [[Li-Fraumeni syndrome|Li-Fraumeni syndrome]] usually have one mutant allele in their germ cells and thus an increased risk of developing [[sarcomas]], [[leukemia]] and [[ca breast|carcinoma of the mammary gland] ]].


Lokalizován na krátkém ramenu [[chromosom]]u 17 (17p13.1, [https://www.omim.org/entry/191170 OMIM: 191170]), obsahuje 393 kodonů, reguluje průběh interfáze, zvaný také „strážce genomu“. Reaguje na poškození DNA dočasným pozastavením cyklu a umožní tak reparaci chyb (tzv. velký repair).
Located on the short arm of [[chromosome]]u 17 (17p13.1, [https://www.omim.org/entry/191170 OMIM: 191170]), contains 393 codons, regulates the course of interphase, also called "guardian of the genome" . It reacts to DNA damage by temporarily suspending the cycle and thus enables error repair (the so-called big repair).
{{Cave| Gen p53 není přímo odpovědný za pozastavení cyklu ani za reparaci chyb.}} Zahájení a trvání klidového stadia kontroluje prostřednictvím genů, jejichž transkripční aktivitu řídí svým proteinem p53.
{{Cave| The p53 gene is not directly responsible for cycle arrest or error repair.}} It controls the initiation and duration of the quiescent stage through genes whose transcriptional activity is controlled by its p53 protein.


Gen p53 se uplatňuje i v 2. kontrolním bodě interfáze – pozastavením buněčného cyklu v tomto období umožňuje tzv. postreplikační repair. Dále vyvolává a koordinuje apoptózu, když reparace DNA není úspěšná.
The p53 gene is also used in the 2nd interphase checkpoint - by pausing the cell cycle in this period, it enables the so-called post-replication repair. Furthermore, it induces and coordinates apoptosis when DNA repair is not successful.
[[Soubor:P53 pathways.jpg|náhled|250px|P53 pathways]]
[[File:P53 pathways.jpg|preview|250px|P53 pathways]]
{| class="wikitable"
{| class="wikitable"


  |+Přehled některých recesivních onkogenů podmiňujících nádorová onemocnění
  |+Overview of some recessive oncogenes causing cancer
  !Symbol!!Název!!Nádorové onemocnění
  !Symbol!!Name!!Cancer disease
  |-
  |-
  |APC||Gen adematózní polypózy tlustého střeva||Kolorektální karcinom
  |APC||Adematous polyposis colon gene||Colorectal carcinoma
  |-
  |-
  |[[BRCA1]]||Gen 1 pro familiární karcinom prsu/vaječníku||Hereditární karcinom prsu/ovaria
  |[[BRCA1]]||Family Breast/Ovarian Cancer Gene 1||Hereditary Breast/Ovarian Cancer
  |-
  |-
  |[[BRCA2]]||Gen 2 pro familiární karcinom prsu/vaječníku||Hereditární karcinom prsu/ovaria
  |[[BRCA2]]||Family Breast/Ovarian Cancer Gene 2||Hereditary Breast/Ovarian Cancer                                         
  |-
  |-
  |CDH1||Gen pro kadherin 1||Familiární karcinom žaludku, lobulární karcinom prsu
  |CDH1||Cadherin 1 gene||Familial gastric cancer, lobular breast cancer
  |-
  |-
  |CDNK2A||Gen inhibitoru cyklin-dependentní kinázy 2A (p16)||Maligní melanom kůže
  |CDNK2A||Cyclin-dependent kinase 2A inhibitor gene (p16)||Malignant melanoma of the skin
  |-
  |-
  |EP300||Gen vazebného proteinu 300 kD-E1A||Karcinomy kolorektální, pankreatu, prsu
  |EP300||300 kD-E1A binding protein gene||Colorectal, pancreatic, breast carcinomas
|}
|}


<noinclude>
<noinclude>


==Odkazy==
==Links==
===Zdroj===
===Source===


* {{Citace
* {{Citation
|typ = web
|type = web
|příjmení1 = Štefánek
|surname1 = Štefánek
|jméno1 = Jiří
|name1 = George
|název = Medicína, nemoci, studium na 1. LF UK
|name = Medicine, diseases, studies at the 1st Faculty of Medicine, UK
|citováno = 11.02.2010
|cited = 2010-02-11
|url = https://www.stefajir.cz/
|url = https://www.stefajir.cz/
}}
}}


* {{Citace|typ = web|příjmení1 = Masopust|jméno1 = Jaroslav|název = Patobiochemie buňky
* {{Citation|type = web|surname1 = Masopust|name1 = Jaroslav|title = Pathobiochemistry of cells
|rok = 2003
|year = 2003
|citováno = 17.03.2011
|cited = 2011-03-17
|url = http://dotdiag.cz/img/prednasky/bunka.pdf}}
|url = http://dotdiag.cz/img/prednasky/bunka.pdf}}
</noinclude>
</noinclude>
{{Pahýl}}
{{Stump}}


[[Kategorie:Vnitřní lékařství]]
[[Category:Internal Medicine]]
[[Kategorie:Chirurgie]]
[[Category:Surgery]]
[[Kategorie:Genetika]]
[[Category:Genetics]]
[[Kategorie:Onkologie]]
[[Category:Oncology]]
[[Kategorie:Patofyziologie]]
[[Category:Pathophysiology]]
[[Kategorie:Patobiochemie]]
[[Category:Pathobiochemistry]]
[[Kategorie:Biochemie]]
[[Category:Biochemistry]]

Revision as of 15:34, 1 July 2022


Tumor suppressor genes' (also called anti-oncogenes or recessive oncogenes) have an essential role in the malignant process. Their products regulate cell division. The loss of both alleles of a certain suppressor gene (e.g. deletion), a change in their structure (e.g. point mutation) leads to a disorder of cell cycle control ) or inactivation of the protein encoded by them. All this can result in a malignant transformation of the cell.

General

The principle of the two-hit theory in retinoblastoma

Mutations in tumor suppressor genes have a ``recessive character. Unlike oncogenes, proteins encoded by anti-oncogenes have an antiproliferative effect, promote differentiation and apoptosis.

There are about 40 tumor suppressor genes in each somatic cell. To become tumorigenic, both of their alleles must be mutated – hence the name recessive oncogenes. This is related to the so-called double hit theory (first formulated by Knudson when explaining the occurrence of rare hereditary retinoblastoma). In contrast to the much more common sporadic retinoblastoma, where there are random mutations of one and then the other allele in the retinal cell, in the hereditary form one mutated allele is inherited. The relevant individual is a heterozygote in whom the inherited tumor predisposition is not yet manifested. However, if the second allele is mutated/eliminated, the development of a tumor clone of retinal cells is initiated.

This process is called ``loss of heterozygosity (LOH – loss of heterozygosity).

pRB

The CDK4/Cyclin D complex phosphorylates the pRB/E2F complex and thereby releases the E2F transcription factor, which further enables the cell to transition from G1 to S phase The first discovered tumor suppressor gene was called the retinoblastoma gene (RB1 gene)' and its product RB-protein (pRB). It occurs in every cell, where it regulates the cell division cycle.

Retinoblastoma gene (RB1) and another tumor suppressor gene TP53, respectively. their products act as a kind of brake on cell proliferation. RB1 negatively regulates the important transcription factor E2F. Deletion of the ``RB1 gene, which occurs in hereditary retinoblastoma, or sequestration of its protein product in the presence of adenoviral protein E1A or protein E7 (in human papillomavirus infection) induces unblocking of E2F suppression. In contrast, p53 acts by promoting the expression of p21/CIP, which is a potent inhibitor of cell cycle-regulating kinases (cyclin-dependent kinases).

Loss of the regulatory function of the Rb gene in the cell cycle or overexpression of c-myc leads to increased proliferation, but also to increased apoptosis of the affected cells. Virogenic products such as E1A (adenovirus infection), T121-antigen' (from SV-virus) or E7 (from human papillomavirus) bind to Rb and then have a similar effect. At this stage, the number of transformed cells does not increase yet. However, another genetic change, causing loss of p19ARF, mutation of p53, or overexpression of bcl-2, leads to increased proliferation and reduced apoptosis. Contributing to this are gene products such as E1b (from adenovirus), large antigen from SV-virus and E-6 antigen from papillomavirus, which bind to the p53 protein. Apoptosis, or the tendency to decrease it, is of key importance for the development of tumorigenesis.

p53

The tumor suppressor gene TP53, which encodes the protein p53, is a key regulatory factor that monitors DNA damage. Inactivation of p53 is usually one of the first steps that leads to malignant transformation in the development of a number of cancer diseases. Patients with Li-Fraumeni syndrome usually have one mutant allele in their germ cells and thus an increased risk of developing sarcomas, leukemia and carcinoma of the mammary gland] .

Located on the short arm of chromosomeu 17 (17p13.1, OMIM: 191170), contains 393 codons, regulates the course of interphase, also called "guardian of the genome" . It reacts to DNA damage by temporarily suspending the cycle and thus enables error repair (the so-called big repair). Cave!!!.png It controls the initiation and duration of the quiescent stage through genes whose transcriptional activity is controlled by its p53 protein.

The p53 gene is also used in the 2nd interphase checkpoint - by pausing the cell cycle in this period, it enables the so-called post-replication repair. Furthermore, it induces and coordinates apoptosis when DNA repair is not successful. P53 pathways

Overview of some recessive oncogenes causing cancer
Symbol Name Cancer disease
APC Adematous polyposis colon gene Colorectal carcinoma
BRCA1 Family Breast/Ovarian Cancer Gene 1 Hereditary Breast/Ovarian Cancer
BRCA2 Family Breast/Ovarian Cancer Gene 2 Hereditary Breast/Ovarian Cancer
CDH1 Cadherin 1 gene Familial gastric cancer, lobular breast cancer
CDNK2A Cyclin-dependent kinase 2A inhibitor gene (p16) Malignant melanoma of the skin
EP300 300 kD-E1A binding protein gene Colorectal, pancreatic, breast carcinomas


Links

Source

  • {{#switch: web

|book =

  Incomplete publication citation. ŠTEFÁNEK, GeorgeAlso available from <https://www.stefajir.cz/>. 

|collection =

  Incomplete citation of contribution in proceedings. ŠTEFÁNEK, George. Also available from <https://www.stefajir.cz/>. {{
  #if:  |978-80-7262-438-6} }
  |article = 
  Incomplete article citation.  ŠTEFÁNEK, George. Medicine, diseases, studies at the 1st Faculty of Medicine, UK. also available from <https://www.stefajir.cz/>. 

|web =

  ŠTEFÁNEK, George. Medicine, diseases, studies at the 1st Faculty of Medicine, UK [online]. [cit. 2010-02-11]. <https://www.stefajir.cz/>.

|cd =

  ŠTEFÁNEK, George. Medicine, diseases, studies at the 1st Faculty of Medicine, UK [CD/DVD]. [cit. 2010-02-11]. 

|db =

  Incomplete database citation. Medicine, diseases, studies at the 1st Faculty of Medicine, UK [database]. [cit. 2010-02-11]. <https://www.stefajir.cz/>.

|corporate_literature =

  Incomplete citation of company literature. ŠTEFÁNEK, George. Also available from <https://www.stefajir.cz/>. legislative_document = 
  Incomplete citation of legislative document.  Also available from URL <https://www.stefajir.cz/>.


  • {{#switch: web

|book =

  Incomplete publication citation. MASOPUST, Jaroslav. Pathobiochemistry of cells [online] . 2003. Also available from <http://dotdiag.cz/img/prednasky/bunka.pdf>. 

|collection =

  Incomplete citation of contribution in proceedings. MASOPUST, Jaroslav. Pathobiochemistry of cells [online] . 2003. Also available from <http://dotdiag.cz/img/prednasky/bunka.pdf>. {{
  #if:  |978-80-7262-438-6} }
  |article = 
  Incomplete article citation.  MASOPUST, Jaroslav. 2003, year 2003, also available from <http://dotdiag.cz/img/prednasky/bunka.pdf>. 

|web =

  Incomplete site citation. MASOPUST, Jaroslav. ©2003. [cit. 2011-03-17]. <http://dotdiag.cz/img/prednasky/bunka.pdf>.

|cd =

  Incomplete carrier citation. MASOPUST, Jaroslav. ©2003. [cit. 2011-03-17]. 

|db =

  Incomplete database citation. ©2003. [cit. 2011-03-17]. <http://dotdiag.cz/img/prednasky/bunka.pdf>.

|corporate_literature =

  Incomplete citation of company literature. MASOPUST, Jaroslav. Pathobiochemistry of cells [online] . 2003. Also available from <http://dotdiag.cz/img/prednasky/bunka.pdf>. legislative_document = 
  Incomplete citation of legislative document.  2003. Also available from URL <http://dotdiag.cz/img/prednasky/bunka.pdf>.


Template:Stump