Mechanism of action of poisons: Difference between revisions
Feedback

From WikiLectures

(Created page with "'''[[A poison]'' is a substance that, when administered in small quantities, causes disease or death based on its chemical properties. Poisons act in the body through vari...")
 
mNo edit summary
Line 1: Line 1:
'''[[A poison]'' is a substance that, when administered in small quantities, causes disease or [[death]] based on its chemical properties. Poisons act in the body through various mechanisms:
A '''[[Poison]]''' is a substance that, when administered in small quantities, causes disease-like changes or [[death]] based on its chemical properties. Poisons act in the body through various mechanisms:
* '''Etching'''
* '''Etching'''
::This term refers to the local denaturation of tissue components by caustics, i.e. strong acids with pK < 2, e.g. H<sub>2</sub>SO<sub>4</sub>, HCl or HNO<sub>3</sub>, or strong bases (lyses) with pK > 11,5, e.g. NaOH, KOH, NH<sub>4</sub>OH.
::This term refers to local denaturation of tissue components by caustics, i.e. strong acids with pK < 2, e.g. H<sub>2</sub>SO<sub>4</sub>, HCl or HNO<sub>3</sub> sub>, or strong bases (lyes) with pK > 11.5, e.g. NaOH, KOH, NH<sub>4</sub>OH.
::{{Podrobnosti|Požití kyselin a louhů}}
::{{Details|Ingestion of Acids and Alkalies}}
* '''Covalent non-specific interactions with biomolecules (proteins, nucleic acids and polysaccharides)'''.
* '''Covalent non-specific interactions with biomolecules (proteins, nucleic acids and polysaccharides)'''.
::Examples of these poisons are very reactive aldehydes. Aldehyde group -CHO reacts willingly with amino group -NH<sub>2</sub> or sulfhydryl group -SH, occurring abundantly in proteins. An example is methanol ([[formaldehyde]]) HCHO, its aqueous saturated solution is known as [[formalin]].
::Example of these poisons are very reactive aldehydes. Aldehyde group -CHO reacts willingly with amino group -NH<sub>2</sub> or sulfhydryl group -SH, occurring abundantly in proteins. An example is methanal ([[formaldehyde]]) HCHO, its aqueous saturated solution is known as [[formalin]].
* '''Violation of acid-base balance'''.
* '''Violation of acid-base balance'''.
::some poisons [[disrupt the acid-base balance]] of organism<ref>[https://dl1.cuni.cz/course/view.php?id=110 E-kurz o acidobazické rovnováze na univerzitním MOODLE]</ref>. [[Ethylene glycol]] is oxidized by [[alcohol dehydrogenase]] to glycolic, glyoxalic and oxalic (oxalic) acids, which cause [[metabolic acidosis]]. [[Salicylates]] stimulate the respiratory center.The resulting hyperventilation leads to [[respiratory alkalosi]]. After these substances enter the cells, they uncouple oxidative phosphorylation in the mitochondria, reducing ATP production, blocking enzymes [[of the citrate cycle]] and stimulating [[anaerobic glycolysis]]. The result is the overproduction and accumulation of acidic metabolites, mainly lactate, pyruvate and acetoacetate, and thus develops [[metabolic acidosis]].
::Some poisons [[Acid-base balance disorders|disrupt the acid-base balance]] of the organism<ref>[https://dl1.cuni.cz/course/view.php?id=110 E-course on acid-base balance at university MOODLE]< /ref>. [[Ethylene glycol]] is oxidized by [[alcohol dehydrogenase|alcohol dehydrogenase]] to glycolic, glyoxalic, and oxalic (oxalic) acids, which cause [[metabolic acidosis|metabolic acidosis]]. [[Salicylates]] stimulate the respiratory center. The resulting hyperventilation leads to [[respiratory alkalosis|respiratory alkalosis]]. After these substances enter the cells, they turn off oxidative phosphorylation in the mitochondria, decrease ATP production, block [[Citrate cycle|citrate cycle]] enzymes and stimulate [[Glycolysis|anaerobic glycolysis]]. The result is overproduction and accumulation of acidic metabolites, mainly lactate, pyruvate and acetoacetate, and thus [[metabolic acidosis]] develops.
::{{Podrobnosti|Intoxikace alkoholy#Etylenglykol}}
::{{Details|Alcohol intoxication#Ethylene glycol}}
* '''Účinek na membrány'''
* '''Effect on Membranes'''
::Etanol, [[detergent]]y a uhlovodíky mění fluiditu membrán, což se promítne do funkce membránových komponent. Změny membránové mikroviskozity změní konformaci membránových kanálů, receptorů a enzymů, a tím naruší jejich funkce (membránový transport, převod informace, membránový potenciál). [[Fluidita]] membrán je kontrolním mechanizmem vstřebávání těžkých kovů.
::Ethanol, [[detergent]]s and hydrocarbons change the fluidity of the membranes, which is reflected in the function of the membrane components. Changes in membrane microviscosity will change the conformation of membrane channels, receptors and enzymes, thereby disrupting their functions (membrane transport, information transfer, membrane potential). [[Fluidity]] of membranes is a control mechanism for heavy metal absorption.
::{{Podrobnosti|Intoxikace alkoholy}}
::{{Details|Alcohol intoxication}}
* '''Interakce s přenosem kyslíku v organizmu'''
* '''Interaction with the transfer of oxygen in the organism'''
:# Vazba jedu na hemoglobin {{Podrobnosti|Intoxikace oxidem uhelnatým}}
:# Binding of poison to hemoglobin {{Details|Carbon monoxide poisoning}}
:# Oxidace hemoglobinu na [[methemoglobin]] {{Podrobnosti|Intoxikace methemoglobinizujícími látkami}}
:# Oxidation of hemoglobin to [[methemoglobin]] {{Details|Intoxication by methemoglobinizing substances}}
:# Inhibice [[cytochromoxidáza|cytochromoxidázy]] {{Podrobnosti|Intoxikace kyanovodíkem a kyanidy}}
:# Inhibition of [[cytochrome oxidase|cytochrome oxidase]] {{Details|Hydrogen cyanide and cyanide intoxication}}
* '''Inhibice enzymů'''
* '''Inhibition of enzymes'''
:# Nespecifické interakce, vazba na sulfhydrylovou skupinu -SH.
:# Non-specific interactions, binding to sulfhydryl group -SH.
:# Vazba jedu na aktivní centrum enzymu.
:# Binding of the poison to the active site of the enzyme.
* '''Interakce se specifickými receptory a porušení buněčné signalizace nebo funkce membránových kanálů'''.
* '''Interaction with specific receptors and disruption of cell signaling or membrane channel function'''.
::Sodíkový kanál, nikotinové a muskarinové receptory, [[psychofarmaka]], [[návykové látky]].
::Sodium channel, nicotinic and muscarinic receptors, [[psychopharmaceuticals]], [[addictive substances]].
== Odkazy ==
== Links ==
=== Literatura ===
=== Literature ===
=== Reference ===
=== References ===
<references/>
<references/>


[[Kategorie:Patobiochemie]]
[[Category:Pathobiochemistry]]
[[Kategorie:Biochemie]]
[[Category:Biochemistry]]
[[Kategorie:Soudní lékařství]]
[[Category:Forensic medicine]]

Revision as of 17:13, 25 November 2022

A Poison is a substance that, when administered in small quantities, causes disease-like changes or death based on its chemical properties. Poisons act in the body through various mechanisms:

  • Etching
This term refers to local denaturation of tissue components by caustics, i.e. strong acids with pK < 2, e.g. H2SO4, HCl or HNO3 sub>, or strong bases (lyes) with pK > 11.5, e.g. NaOH, KOH, NH4OH.
Searchtool right.svg For more information see Ingestion of Acids and Alkalies.
  • Covalent non-specific interactions with biomolecules (proteins, nucleic acids and polysaccharides).
Example of these poisons are very reactive aldehydes. Aldehyde group -CHO reacts willingly with amino group -NH2 or sulfhydryl group -SH, occurring abundantly in proteins. An example is methanal (formaldehyde) HCHO, its aqueous saturated solution is known as formalin.
  • Violation of acid-base balance.
Some poisons disrupt the acid-base balance of the organism<ref>E-course on acid-base balance at university MOODLE< /ref>. Ethylene glycol is oxidized by alcohol dehydrogenase to glycolic, glyoxalic, and oxalic (oxalic) acids, which cause metabolic acidosis. Salicylates stimulate the respiratory center. The resulting hyperventilation leads to respiratory alkalosis. After these substances enter the cells, they turn off oxidative phosphorylation in the mitochondria, decrease ATP production, block citrate cycle enzymes and stimulate anaerobic glycolysis. The result is overproduction and accumulation of acidic metabolites, mainly lactate, pyruvate and acetoacetate, and thus metabolic acidosis develops.
Searchtool right.svg For more information see Alcohol intoxication#Ethylene glycol.
  • Effect on Membranes
Ethanol, detergents and hydrocarbons change the fluidity of the membranes, which is reflected in the function of the membrane components. Changes in membrane microviscosity will change the conformation of membrane channels, receptors and enzymes, thereby disrupting their functions (membrane transport, information transfer, membrane potential). Fluidity of membranes is a control mechanism for heavy metal absorption.
Searchtool right.svg For more information see Alcohol intoxication.
  • Interaction with the transfer of oxygen in the organism
  1. Binding of poison to hemoglobin
    Searchtool right.svg For more information see Carbon monoxide poisoning.
  2. Oxidation of hemoglobin to methemoglobin
  3. Inhibition of cytochrome oxidase
    Searchtool right.svg For more information see Hydrogen cyanide and cyanide intoxication.
  • Inhibition of enzymes
  1. Non-specific interactions, binding to sulfhydryl group -SH.
  2. Binding of the poison to the active site of the enzyme.
  • Interaction with specific receptors and disruption of cell signaling or membrane channel function.
Sodium channel, nicotinic and muscarinic receptors, psychopharmaceuticals, addictive substances.

Links

Literature

References