Hemoglobin and its derivatives: Difference between revisions
Feedback

From WikiLectures

No edit summary
No edit summary
Line 199: Line 199:


== [[Železo]] ==
== [[Železo]] ==
{{Edituj článek|Železo}}{{:Železo}}
{{Edituj článek|Železo}}'''Železo''' je jedním z nejdůležitějších prvků v lidském organismu. V těle dospělého člověka je obsaženo více než 70 mmol (4,0–4,5 g) železa. U žen je toto množství nižší než u mužů, což se přičítá ztrátám krve při [[menses]].
 
{| class = wikitable
|+ Distribuce železa v organismu
! Forma !! Funkce !! Protein !! Množství v g
|-
| rowspan=4| '''Aktivní železo''' || rowspan=2| transport kyslíku              || [[hemoglobin]]                                  ||                    2,5–3,0
|-
|                                                                                                            [[myoglobin]]                                    ||                    0,3
|-
|                                                                  přenos elektronů              || [[cytochrom]]y, [[cytochromoxidáza]]  || rowspan=2 | 0,2
|-
|                                                                  rozklad peroxidu vodíku    || [[kataláza]], [[peroxidáza]]
|-
| colspan=2| '''Zásobní železo'''                                                            || [[feritin]], [[hemosiderin]]                    ||                  0,8–1,0
|-
| colspan=2| '''Transportní železo'''                                                        || [[transferin]]                                        ||                  0,003
 
|}
 
=== Metabolismus železa ===
Přítomnost železa je nezbytná pro funkci buněk. Jako součást hemu se účastní transportu kyslíku a jako součást cytochromů podmiňuje přenos elektronů v dýchacím řetězci. Nežádoucím účinkem železa jako přechodného a velmi reaktivního prvku je účast v radikálových reakcích, při nichž vznikají tzv. [[ROS|reaktivní formy kyslíku]]. Ty mohou poškozovat buněčné membrány, proteiny a DNA.
 
Železo se absorbuje jako Fe<sup>2+</sup> aktivním transportem v duodenu a v horní části jejuna, a to dvěma způsoby:
# na porfyrin vázané Fe ve formě stabilního lipofilního komplexu;
# Fe<sup>II+</sup> – cheláty rozpustné ve vodě.
Jen nepatrná část se vstřebává v ionizované formě.
 
Ve stravě bývá průměrně 10–50 mg železa za den, ale vstřebá se pouze 10–15 %. Ve sloučeninách hemu (maso) se absorbuje lépe, nehemové Fe v rostlinné stravě mnohem hůře. Kromě toho rostliny obsahují oxaláty, fytáty, taniny a jiné fenolické sloučeniny, jež tvoří s Fe nerozpustné nebo chelátové komplexy, které se těžko vstřebávají. [[Kyselina askorbová|Askorbová kyselina]] na druhé straně absorpci železa zlepšuje.
 
Po vychytání střevní mukózou se část železa inkorporuje do zásobní formy – '''[[feritin]]u''' v intestinálních buňkách. Část absorbovaného železa přestupuje do plazmy, kde je transportováno ve vazbě na '''[[transferin]]'''. Důležitou roli při přenosu železa přes bazolaterální membránu enterocytů má protein '''ferroportin''' (nachází se i v membráně makrofágů a hepatocytů). Je to hlavní místo regulace homeostázy železa v organismu. Klíčovým faktorem regulace je protein '''hepcidin''', který je syntetizován v játrech. Vazbou na ferroportin inhibuje transport železa z buněk a tím přispívá k jeho sekvestraci v nich. Hladina hepcidinu se zvyšuje při zánětu. Hepcidin je částečně zodpovědný i za '''anémii chronických chorob'''. Mutace genu pro hepcidin vedou k '''juvenilní hemochromatóze typu 2B'''.
 
Plazmatické železo je zachycováno buňkami cílových tkání prostřednictvím receptoru pro transferin a buď je zabudováno do hemu nebo uloženo do zásoby ve formě feritinu. Využití specifické transportní bílkoviny transferinu a zásobního proteinu feritinu pro uskladnění železa představuje ochranné mechanismy, které mají zamezit toxickému působení oxidoredukčně aktivního železa.
 
Při deskvamaci odumřelých slizničních buněk odchází nezužitkované železo stolicí spolu s nevstřebaným železem.
 
 
[[Soubor:Distribuce železa v organismu.jpg|800px|Distribuce železa v organismu]]
 
 
 
=== Vyšetření metabolismu železa ===
V praxi se běžně setkáváme s onemocněními spojenými se změnami metabolismu a utilizace železa. Laboratorní vyšetření metabolismu železa zahrnuje následující vyšetření:
* železo v séru
* sérový transferin a vazebná kapacita pro železo
* sérový feritin
* transferinový receptor
Uvedené parametry jsou důležitými diagnostickými ukazateli pro průkaz poklesu či nárůstu zásob železa ještě ve stádiích, která nejsou doprovázena výraznými klinickými projevy.
 
==== Stanovení železa v séru ====
[[Soubor:Princip stanovení železa v séru.jpg| thumb |300px|Princip stanovení železa v séru]]
Pro stanovení železa v séru se používají kolorimetrické metody, atomová absorpční [[spektrofotometrie]] a další speciální techniky. Nejužívanější jsou fotometrické metody, založené na reakci železa s komplexotvornou látkou. Všechny postupy zahrnují následující kroky:
[[Soubor:Ferrozin.jpg| thumb |150px|Ferrozin]]
# Uvolnění Fe<sup>3+</sup> z vazby na transferin pomocí kyselin nebo tenzidů (např. HCl).
# Redukce Fe<sup>3+</sup> na Fe<sup>2+</sup>, která je nezbytná pro reakci s komplexotvorným činidlem. K redukci se používá např. [[kyselina askorbová]].
# Reakce Fe<sup>2+</sup> s komplexotvorným činidlem obsahujícím reaktivní skupiny –N=C–C=N– za vzniku barevného komplexu. Ionty kovu vytvářejí cheláty s dvěma atomy dusíku. V současnosti se využívají především dvě komplexotvorné látky – '''bathofenentrolin''' a '''ferrozin''' (3-(2-pyridyl)-5,6-bis(4-sulfofenyl)-1,2,4-triazin – PST, chráněný název FerroZine&reg;), který má vyšší absorpční koeficient a je lépe rozpustný ve vodě.
 
;Hodnocení: Koncentrace sérového železa podléhají cirkadiánnímu rytmu a jsou ovlivněny i dalšími faktory. To omezuje diagnostický význam tohoto parametru. Je špatným ukazatelem tkáňových zásob železa a je nutné ho vždy posuzovat v kombinaci se sérovým transferinem a vazebnou kapacitou pro železo. Snížené koncentrace doprovázejí nedostatek železa, způsobený např. velkými nebo opakovanými krevními ztrátami, nedostatečným příjmem železa potravou nebo narušenou absorpcí. Nález není specifický, neboť se sníženými hladinami se setkáváme rovněž u akutní infekce nebo chronických zánětlivých onemocněních (přesun železa do tkání). Vysoké hladiny železa se vyskytují u [[hemochromatóza|hemochromatózy]] (viz níže), při předávkování nebo intoxikaci železem, při zvýšeném rozpadu erytrocytů a u některých jaterních onemocnění.
 
;Referenční hodnoty
: muži: 9–29 μmol/l
: ženy: 7–28 μmol/l
 
==== Sérový transferin a vazebná kapacita pro železo ====
Železo je transportováno krví ve vazbě na specifický protein s β<sub>1</sub>-elektroforetickou pohyblivostí – '''[[transferin]]''', který je syntetizován v játrech. Rychlost jeho tvorby je nepřímo úměrná zásobám železa v organismu; zvyšuje se při nedostatku železa a při nadbytku klesá. Biologická funkce transferinu spočívá ve schopnosti snadno tvořit netoxické komplexy se železem a přenášet Fe absorbované sliznicí tenkého střeva do kostní dřeně nebo do zásobních forem (feritinu nebo hemosiderinu). Každá molekula transferinu váže dva atomy Fe<sup>3+</sup> (1 g transferinu váže 25,2 μmol železa). Transferin může být stanoven přímo pomocí imunochemických metod nebo nepřímo jako schopnost transferinu vázat železo – tzv. vazebná kapacita pro železo. '''Celková vazebná kapacita pro železo''' (TIBC – ''total iron binding capacity'') je množství železa, které je transferin schopen vázat v případě, že všechna vazebná místa jsou obsazena. Obvykle je železem nasycena pouze 1/3 transferinu – '''vázaná kapacita'''. Volný transferin bez navázaného železa představuje '''volnou vazebnou kapacitu''' (2/3 transferinu), která je k dispozici pro transport železa při zvýšených požadavcích.
 
Přepočet mezi koncentrací transferinu a celkovou vazebnou kapacitou:
 
: '''Celková vazebná kapacita [μmol/l] = transferin [g/l] · 25,2'''.
 
Referenční rozmezí pro koncentraci transferinu v séru (S-transferin) je 2,0–3,6 g/l a pro celkovou vazebnou kapacitu je 50–70 μmol/l.
 
===== Saturace transferinu =====
Z hodnot koncentrace železa a transferinu můžeme vypočítat '''saturaci transferinu (TfS)''', která je definována jako poměr sérové koncentrace železa k celkové vazebné kapacitě transferinu pro železo. Jedná se o citlivý parametr pro odhalení latentního nedostatku železa.
:<math>\mbox {Saturace transferinu } [%] = \frac {\mbox {S-} \check{\mbox{z}} \mbox{elezo }[\mu \mbox{mol/l}]}{\mbox {S-transferin }[\mbox{g/l}] \times 25,2} \times 100</math>
 
;Hodnocení saturace transferinu:
:fyziologické hodnoty: 25–50 %
:snížení saturace při nedostatku železa: < 15 %
:zvýšení saturace při nadbytku železa: > 50 %
 
==== Feritin a hemosiderin ====
[[Soubor:Schema struktury feritinu.jpg| thumb |300px|Schema struktury feritinu]]
'''[[Feritin]]''' je nejdůležitější zásobní protein pro železo. Molekula feritinu je přizpůsobena vázat velké množství Fe<sup>3+</sup> v rozpustné a netoxické formě pro organismus. Feritin je tvořen vnějším proteinovým obalem z 24 podjednotek – [[apoferitin]]em (Mr 440 000), ohraničujícím dutinu, ve které může být soustředěno až 4500 atomů železa ve formě oxyhydroxidu železitého (FeO·OH)<sub>n</sub> v mikrokrystalické podobě s fosfáty (FeO·OPO<sub>3</sub>H<sub>2</sub>). Vstup a výstup atomů železa umožňují póry mezi jednotlivými podjednotkami obalu molekuly feritinu. Normálně je jeho kapacita využita asi z 20 %. Ukládá se do buněk v játrech, slezině a střevní sliznici.
 
V krevním séru se feritin nachází ve velmi nízké koncentraci. Sérové koncentrace feritinu jsou '''měřítkem zásob železa''' v organismu. Nízké koncentrace indikují vyčerpání celkové tělesné rezervy železa a slouží k časnému odhalení anémie z nedostatku železa ještě v prelatentní fázi. Zvýšené koncentrace feritinu jsou doprovodným jevem vysokých tkáňových zásob železa. Dále se s nimi setkáváme u mnohých pacientů s onemocněním jater, některými maligními nádory (nádorový marker) nebo zánětlivými onemocněními (pozitivní reaktant akutní fáze).
 
Referenční rozmezí pro koncentraci feritinu v séru (S-feritin) je pro muže 30–300 &mu;g/l a pro ženy 20–120 &mu;g/l.
 
'''[[Hemosiderin]]''' je dalším zásobním proteinem pro železo. Vzniká agregací denaturovaného feritinu s dalšími komponentami. Vytváří partikule o velikosti 1 až 2 μm, které jsou při použití barvení na železo viditelné ve světelném mikroskopu. Hemosiderin obsahuje větší množství železa než feritin, ale vzhledem ke špatné rozpustnosti ve vodě je obtížně dostupné. Tvoří se za situace, kdy množství železa v organismu převýší skladovací kapacitu feritinu.
 
==== Transferinový receptor ====
[[Soubor:Transferinový receptor.jpg| thumb |300px|Transferinový receptor]]
Železo transportované krví transferinem je zachycováno buňkami prostřednictvím specifického transferinového receptoru (TfR). V určitém stádiu vývoje se nachází na povrchu všech buněk, nejvíce je však exprimován na povrchu prekursorů buněk červené řady v kostní dřeni. TfR je transmembránový protein, který je tvořen dvěma identickými podjednotkami, spojenými disulfidovou vazbou. Oddělením extracelulárních domén receptoru se do cirkulace uvolňuje tzv. '''solubilní (rozpustná) frakce transferinového receptoru (sTfR)''', který může být v podobě dimeru nebo monomeru. Buňky reagují na snížení zásob železa syntézou zvýšeného množství transferinových receptorů.
 
Zvýšení sTfR je spolehlivým '''ukazatelem nedostatku železa pro krvetvorbu'''. Se zvýšenými hladinami sTfR se setkáváme u ''anemií z nedostatku železa'' nebo u ''hemolytických anemií''. Cenné je stanovení sTfR u anemických pacientů, u nichž je zvýšen feritin z důvodů reakce akutní fáze. Stanovení koncentrace sTfR je možno využít i u pacientů s transplantovanou kostní dření pro sledování průběhu erytropoézy.
 
Ke stanovení se používají imunochemické metody.
 
== Poruchy metabolismu železa ==
{{Edituj článek|Poruchy metabolismu železa}}{{:Poruchy metabolismu železa}}{{:Železo}}


'''Úkol: [http://portal.med.muni.cz/download.php?fid=656 Stanovení Fe v séru kolorimetrickou metodou]''' (pdf)
'''Úkol: [http://portal.med.muni.cz/download.php?fid=656 Stanovení Fe v séru kolorimetrickou metodou]''' (pdf)

Revision as of 18:24, 23 November 2021

Under construction / Forgotten

This article was marked by its author as Under construction, but the last edit is older than 30 days. If you want to edit this page, please try to contact its author first (you fill find him in the history). Watch the discussion as well. If the author will not continue in work, remove the template {{Under construction}} and edit the page.

Last update: Tuesday, 23 Nov 2021 at 6.24 pm.


Template:Základní článek

Hemoglobin is a red blood pigment that transports oxygen from the lungs to the tissues and transports CO2 and protons from peripheral tissues to the respiratory system.

náhled|Rozdíl mezi venózní a arteriální krví

The hemoglobin concentration in a healthy adult male is approximately 150 g / l, in an adult female about 140 g / l.  One gram of hemoglobin can bind up to 1.34 ml of oxygen.[1]

Structure of hemoglobin

náhled|100px|Hemoglobin náhled|100px|Hem It is a tetrameric protein made up of four subunits. The two and two subunits are always identical.  There are four types of polypeptide chains, physiologically occurring hemoglobin, α, β, γ, and δ, which differ in the number and sequence of amino acids.  The tetramer consists of two α chains and two other types of chains that indicate the character of the whole hemoglobin molecule.  In adults, hemoglobin A predominates, with two β chains (146 amino acids) involved in addition to two α chains (141 amino acids).

Each subunit includes a polypeptide chain to which one heme is covalently attached.  The basis of the heme molecule is protoporphyrin, formed by 4 pyrrole nuclei connected by methenyl bridges with centrally bound iron.  Heme iron is a total of six bonds - it is connected to the nitrogen atoms of the pyrrole nuclei by four coordination bonds.  By another coordination valence, iron binds to the imidazole group of the amino acid histidine in the globin chain.  The sixth valence Fe is for the oxygen molecule (O2).

Hemoglobin in the blood

Determination of hemoglobin in the blood is one of the most basic laboratory tests.  Blood hemoglobin is the main criterion for assessing whether it is anemia.  The term anemia is used when hemoglobin or erythrocytes fall below the lower limit of physiological levels. Anemia is a very common clinical finding.  This is a condition that leads to a reduction in oxygen binding capacity and a consequent tissue respiratory disorder.

Causes of Anemia

Anemia occurs when erythropoiesis is unable to meet the requirements for new red blood cells.  It develops as a result of blood loss or increased loss of red blood cells or insufficient red blood cell production.  The following is a list of some specific causes of anemia:

  1. Anemia from increased blood loss:
    • Acute blood loss.
    • Chronic blood loss.
  2. Anemia due to increased erythrocyte breakdown (hemolytic conditions).
    • Autoimmune hemolytic anemia (presence of antibodies against own erythrocytes).
    • Erythrocyte membrane disorder (deviation in erythrocyte membrane composition).
    • Hereditary erythrocyte enzyme defects (pyruvate kinase, glucose-6-phosphate dehydrogenase).
    • Unstable hemoglobin - hemoglobinopathies (e.g. hemoglobin S in sickle cell disease).
  3. Anemia from decreased erythrocyte production:
    • Lack of substances needed for erythropoiesis (iron deficiency, vitamin B12 deficiency, folic acid deficiency, erythropoietin deficiency - chronic renal diseases, lack of other substances such as vitamins B1, B6).
    • Anemia due to chemical, physical and radiation damage.
    • Anemia in chronic inflammatory, infectious and cancerous diseases.

Elevated hemoglobin levels may be a sign of dehydration or chronic decreased pulmonary ventilation.  Rarely, it can be caused by some myeloproliferative conditions, such as polycythemia vera.

Principle of hemoglobin determination in blood

Oxidation of hemoglobin to methemoglobin:

HbFeII +     [FeIII(CN)6]3−     →     HbFeIII +     [FeII(CN)6]4−
Hemoglobin Methemoglobin

Conversion of methemoglobin to cyanomethemoglobin:

HbFeIII +     CN     →     HbFeIIICN
Methemoglobin Cyanomethemoglobin


The photometric determination is based on the oxidation of ferrous iron in hemoglobin with potassium ferrocyanide to ferric iron.  The resulting methemoglobin is converted to a very stable cyanomethemoglobin in a further reaction with potassium cyanide with a single broad absorption maximum in the visible region at 540 nm.

Assessment: The reference range for hemoglobin in the blood (B hemoglobin) for an adult male is 130-180 g / l and for a female 120-160 g / l.

Task: Determination of hemoglobin in the blood (pdf)

Hemoglobine in urine

Up to a million erythrocytes per day are excreted in the urine of completely healthy people.  This very small amount cannot be demonstrated by conventional chemical tests.  Occurrence of a larger number of erythrocytes (hematuria, erythrocyturia) or penetration of free hemoglobin, or  muscle myoglobin, into definitive urine (hemoglobinuria or myoglobinuria) is almost always a pathological finding.  We observe macroscopic hematuria with the naked eye;  the urine is pinkish (comparable to water from washed meat) and hemoglobin can be detected spectroscopically in it.  There is at least 1 g of hemoglobin per liter in the urine.  In massive hemoglobinuria, the urine may have a colour of a dark beer (degradation of hemoglobin to hematin).  Microscopic hematuria can only be detected biochemically.

Determination of hemoglobin in urine

Hemoglobin catalyzes, like peroxidase, the oxidation (dehydrogenation) of some substrates (eg benzidine derivatives) by hydrogen peroxide:

However, it is not an enzyme activity (catalysis is conditioned by heme iron) and therefore it is not lost even after heat denaturation.  We are talking about pseudoperoxidase activity, which is used for sensitive but non-specific evidence of hemoglobin or trace amounts of blood.  It is preferable to use a chromogenic substrate to monitor the reaction, i.e., a substance that provides a markedly colored product by dehydrogenation (often benzidine or its non-carcinogenic derivatives, aminophenazone, etc.).

The reagent zone of the diagnostic stripes contains a chromogen (eg tetramethylbenzidine) with stabilized hydrogen peroxide (eg cumene hydroperoxide).  In the presence of free hemoglobin (hemoglobinuria), the indication zone turns uniformly blue.  If erythrocytes (erythrocyturia) are present in the urine, intensely green-blue dots to spots form.

Hemoglobinuria can be encountered in intravascular hemolysis.  Damage to the glomerular membrane (glomerular hematuria) and bleeding from any part of the urinary tract lead to more frequent erythrocyturia.  It is often found in urinary tract infections, urolithiasis and urogenital tract tumors.

In addition to hemoglobin, myoglobin also provides a pseudoperoxidase response, which can be excreted in the urine during skeletal muscle breakdown (rhabdomyolysis, crush syndrome).  The positivity of the test may also be due to peroxidases of leukocytes or certain bacteria, yeasts or fungi, which may occur in the urine, especially in urinary tract infections.  To rule out the possibility of a false positive reaction due to cellular peroxidases, the reaction must be performed with boiled urine.

Contamination of the sampling vessel with strong oxidizing agents also causes a false positive reaction.  On the other hand, the presence of strong reducing substances (eg ascorbic acid) can slow down or even stop the pseudoperoxidase reaction and thus cause false negative results.

Assesment: Determination of blood and hemoglobin in urine (pdf)

Hemoglobin in stool - occult bleeding

Demonstration of occult (hidden) bleeding is used to detect the early stages of colorectal cancer, when radical and effective treatment is possible.  The examination consists of capturing traces of blood in the stool, using various methodological procedures:

  • The methods use the pseudoperoxidase activities of hemoglobin.  The patient must maintain a diet for 3 days before the examination, exclude uncooked meat, salami, bananas, tomatoes from the diet, and must not take drugs containing ascorbic acid or acetylsalicylic acid. The patient then takes samples from three consecutive stools and applies them to the test cards.  The evaluation is performed in the laboratory, the principle is similar to the hemoPHAN diagnostic stripes.
  • Other methods are based on the immunochemical detection of hemoglobin with an anti-human hemoglobin antibody. Immunochemical methods are more sensitive and specific, there is no need to follow a diet before the examination.  Positive results must be verified by other diagnostic methods.

Assesment: Test for occult bleeding in the digestive tract (pdf)

Hemoglobin derivatives

Hemoglobin derivatives include the following types:

Oxyhemoglobin and deoxyhemoglobin

Oxygen-carrying hemoglobin is referred to as oxyhemoglobin (oxyHb).  Each Hb molecule can bind 4 molecules of oxygen.  After the release of oxygen, we speak of deoxyhemoglobin (deoxyHb).  In both forms, iron is divalent because only FeII + -containing hemoglobin can reversibly bind and transport the oxygen molecule.  Oxygenation of the hemoglobin molecule changes the electronic state of the FeII + -hem complex, which results in a change in the color of the dark red (typical of venous blood) to a bright red color (arterial blood).  In the human body, about 98.5% [2] of oxygen is bound to hemoglobin.

Carbaminohemoglobin

Carbaminohemoglobin is a hemoglobin to which CO2 is bound.  Carbon dioxide binds to the globin chain of hemoglobin.  The binding of CO2 to hemoglobin reduces the affinity of hemoglobin for oxygen.

Methemoglobin

Methemoglobin (metHb; also hemiglobin or ferihemoglobin [1]) is characterized by the presence of ferric iron, which is formed by the oxidation of ferrous iron in hemoglobin [3].  Methemoglobin loses its ability to reversibly bind oxygen.  In its place, FeIII+ binds a water molecule through the sixth coordination bond.  The color of methemoglobin is chocolate brown. Methemoglobin is also present physiologically in small amounts in erythrocytes (about 1–3% of the total hemoglobin concentration [4]).  This is mainly due to the effect of nitrite, which is formed from nitrates contained in food.  The reverse reduction of methemoglobin to hemoglobin is mainly ensured by NADH-dependent cytochrome-b5 reductase (also methemoglobin reductase).  A minor role is played by NADPH-dependent methemoglobin reductase, which is dependent on the supply of NADPH from the pentose cycle and on the presence of another electron transporter (eg flavin). [5]  Non-enzymatic mechanisms include the action of glutathione and ascorbic acid.

Elevated blood levels of methemoglobin are called methemoglobinaemia.  The causes are different:

  • Hereditary methemoglobinemia is usually caused by a congenital defect of NADH-dependent methemoglobin reductase or the presence of abnormal hemoglobin M.
  • Acquired methemoglobinemia is the most common form of methemoglobinemia.  May be caused by oxidizing agents [6]:
    • poisoning by certain substances (nitrobenzene, aniline and its derivatives - eg some dyes),
    • by the action of some drugs (local anesthetics - benzocaine, then phenacetin, sulfonamides),
    • increased content of nitrates and nitrites in water and food.

Newborns are particularly sensitive to the increased content of these substances due to the immaturity of the reduction systems and the increased proportion of fetal hemoglobin, which is more easily oxidized.  Methemoglobinemia is manifested by cyanosis with a characteristic gray-brown tint and hypoxia.

Symptoms of methemoglobinemia
Methemoglobin values Symptoms
0–2 % normal value
< 10 % cyanosis
< 35 % cyanosis and other symptoms (headache, dyspnoea)
70 % lethal concentration

Part of the therapy of acquired methemoglobinemia is the administration of some reducing agents - methylene blue or ascorbic acid.

Carbonyl hemoglobin

Carbonylhemoglobin (COHb, carboxyhemoglobin) is formed by the binding of carbon monoxide to hemoglobin.  The bond formed is 250-300 times stronger than the oxygen bond.  Carbonyl hemoglobin cannot transport oxygen and cellular hypoxia develops due to the blood's reduced ability to carry oxygen.  In excess oxygen, the binding of carbon monoxide to hemoglobin is reversible.  Therefore, inhalation of O2 is most important in carbon monoxide poisoning.

COHb can also occur in small amounts in healthy people.  For urban dwellers, values ​​of around 2% are evident; for heavy smokers, COHb can rise to as much as 10% of total hemoglobin.  Staying in an environment containing 0.1% CO for several minutes can increase the carbonyl hemoglobin concentration to 50%.

Carbon monoxide is formed during imperfect combustion of fuels, it is also contained in exhaust gases and in smoke during fires in closed rooms.

Symptoms of carbon monoxide poisoning
COHb values in % Symptoms
10 more exertion shortness of breath
20–40 headache, shortness of breath, fatigue, vomiting
40–60 hyperventilation, tachycardia, syncope, convulsions
60–80 coma, death

Carbonyl hemoglobin is crimson red;  even people with severe carbon monoxide poisoning tend to have "healthy" pink skin.  Compared to hemoglobin, carbonyl hemoglobin is more resistant to chemical influences, it changes more slowly due to the action of various agents.

Spectrophotometry of hemoglobin derivatives

Hemoglobin and its derivatives have characteristic absorption spectra in the visible region of light, which are used for their analysis and rapid identification.  Significant absorption maxima in the range of 400–430 nm, the so-called Soret band, are typical for all hemoproteins.  Other absorption peaks are significantly lower. Oxyhemoglobin is characterized by two incompletely separated maxima in the region of 540 and 578 nm.  Deoxyhemoglobin has a single absorption maximum at 555 nm.  The main absorption maximum of methemoglobin is at 630 nm and the second faint peak at 500 nm depends on pH.  By reacting methemoglobin with potassium cyanide, the maximum disappears at 630 nm, as cyanomethemoglobin is formed.  The decrease in absorbance at 630 nm is proportional to the methemoglobin concentration.  Cyanmethemoglobin has a broad absorption maximum at 540 nm, which is used to determine blood hemoglobin levels. The carbonyl hemoglobin spectrum is similar to that of oxyhemoglobin, but the position of the peaks is shifted toward lower wavelengths.

Absorption maxima of hemoglobin and its derivatives
Hemoglobin derivative Absorption maxima [nm]
Hemoglobin reduced 431, 555
Oxyhemoglobin 414, 540, 578
Methemoglobin 404, 500, 630
Carbonylhemoglobin 420, 538–540, 568–569
Cyanmethemoglobin 421, 540


Determination of carbonyl hemoglobin spectrophotometry:

Determination of carbonyl hemoglobin in the blood is one of the basic toxicological examinations.  It is an objective criterion in the assessment of acute and chronic carbon monoxide poisoning.

  • Spectrophotometric evaluation.  Carbonyl hemoglobin can be determined rapidly spectrophotometrically by subtracting the absorption maximum shift of the diluted blood from 586 nm [7].  The shift of the maximum in the spectrum depends on the ratio of COHb and O2Hb in the sample.
  • Reactions with tannin.  As a guide, carbonyl hemoglobin can be determined by reaction with tannin or Ajatin (about 10% COHb).  Tannin forms a strawberry red precipitate in the presence of carbonyl hemoglobin.  In the absence of carbonyl hemoglobin, the color of the precipitate is brownish gray.
  • Acid-base balance analyzers.  The analysis of the most toxicologically important hemoglobin derivatives COHb and metHb is also made possible by modern acid-base balance analyzers, which have a built-in photometric system for their measurement.


Task: Spectrophotometric examination of hemoglobin and its derivatives (pdf)

Task: Indicative determination of carbonyl hemoglobin (pdf)

Glycated hemoglobin HBA1

Glycated hemoglobin is formed by a non-enzymatic reaction between hemoglobin and blood glucose.  Its creation is irreversible.

Glycated hemoglobin levels therefore reflect blood glucose levels throughout the life of the erythrocyte, i.e. about 120 days, and are used to assess the success of diabetes treatment / compensation in the 4-8 weeks prior to the examination.  The form of the stable HBA1c fraction is most often determined.

Terminology

  • Glycated hemoglobin - the sum of carbohydrate adducts at the N-terminus or ε amino groups of lysine in hemoglobin.
  • HbA1 - the sum of various minor hemoglobin fractions (glycated), including HbA1c, HbA1a1 / a2, HbA1b1 / b2 / b3, HbA1d1 / d2 / d3 and HbA1e.
  • HbA1c - glucose adduct of valine at the N-terminus of β-globin;  corresponds to the so-called stable ketoamine (N- [1-deoxyfructosyl] hemoglobin).

Glycated hemoglobin can be determined by ion exchange chromatography followed by spectrophotometry.

Evaluation

The amount of glycated hemoglobin is expressed in % of total hemoglobin or now in mmol/mol according to the IFCC (International Federation of Clinical Chemistry).

Reference limits

  • in healthy adults up to 39 mmol/mol, (2.8–4.0%) [8]
  • In diabetics, HbA1c concentrations of up to 45 mmol/mol (4.5%) indicate excellent diabetes compensation, up to 60 mmol / mol (6.0%) of acceptable and higher values ​​of unsatisfactory diabetes compensation [9]


Task: Determination of glycated hemoglobin (pdf)

Železo

__Železo je jedním z nejdůležitějších prvků v lidském organismu. V těle dospělého člověka je obsaženo více než 70 mmol (4,0–4,5 g) železa. U žen je toto množství nižší než u mužů, což se přičítá ztrátám krve při menses.

Distribuce železa v organismu
Forma Funkce Protein Množství v g
Aktivní železo transport kyslíku hemoglobin 2,5–3,0
myoglobin 0,3
přenos elektronů cytochromy, cytochromoxidáza 0,2
rozklad peroxidu vodíku kataláza, peroxidáza
Zásobní železo feritin, hemosiderin 0,8–1,0
Transportní železo transferin 0,003

Metabolismus železa

Přítomnost železa je nezbytná pro funkci buněk. Jako součást hemu se účastní transportu kyslíku a jako součást cytochromů podmiňuje přenos elektronů v dýchacím řetězci. Nežádoucím účinkem železa jako přechodného a velmi reaktivního prvku je účast v radikálových reakcích, při nichž vznikají tzv. reaktivní formy kyslíku. Ty mohou poškozovat buněčné membrány, proteiny a DNA.

Železo se absorbuje jako Fe2+ aktivním transportem v duodenu a v horní části jejuna, a to dvěma způsoby:

  1. na porfyrin vázané Fe ve formě stabilního lipofilního komplexu;
  2. FeII+ – cheláty rozpustné ve vodě.

Jen nepatrná část se vstřebává v ionizované formě.

Ve stravě bývá průměrně 10–50 mg železa za den, ale vstřebá se pouze 10–15 %. Ve sloučeninách hemu (maso) se absorbuje lépe, nehemové Fe v rostlinné stravě mnohem hůře. Kromě toho rostliny obsahují oxaláty, fytáty, taniny a jiné fenolické sloučeniny, jež tvoří s Fe nerozpustné nebo chelátové komplexy, které se těžko vstřebávají. Askorbová kyselina na druhé straně absorpci železa zlepšuje.

Po vychytání střevní mukózou se část železa inkorporuje do zásobní formy – feritinu v intestinálních buňkách. Část absorbovaného železa přestupuje do plazmy, kde je transportováno ve vazbě na transferin. Důležitou roli při přenosu železa přes bazolaterální membránu enterocytů má protein ferroportin (nachází se i v membráně makrofágů a hepatocytů). Je to hlavní místo regulace homeostázy železa v organismu. Klíčovým faktorem regulace je protein hepcidin, který je syntetizován v játrech. Vazbou na ferroportin inhibuje transport železa z buněk a tím přispívá k jeho sekvestraci v nich. Hladina hepcidinu se zvyšuje při zánětu. Hepcidin je částečně zodpovědný i za anémii chronických chorob. Mutace genu pro hepcidin vedou k juvenilní hemochromatóze typu 2B.

Plazmatické železo je zachycováno buňkami cílových tkání prostřednictvím receptoru pro transferin a buď je zabudováno do hemu nebo uloženo do zásoby ve formě feritinu. Využití specifické transportní bílkoviny transferinu a zásobního proteinu feritinu pro uskladnění železa představuje ochranné mechanismy, které mají zamezit toxickému působení oxidoredukčně aktivního železa.

Při deskvamaci odumřelých slizničních buněk odchází nezužitkované železo stolicí spolu s nevstřebaným železem.


800px|Distribuce železa v organismu


Vyšetření metabolismu železa

V praxi se běžně setkáváme s onemocněními spojenými se změnami metabolismu a utilizace železa. Laboratorní vyšetření metabolismu železa zahrnuje následující vyšetření:

  • železo v séru
  • sérový transferin a vazebná kapacita pro železo
  • sérový feritin
  • transferinový receptor

Uvedené parametry jsou důležitými diagnostickými ukazateli pro průkaz poklesu či nárůstu zásob železa ještě ve stádiích, která nejsou doprovázena výraznými klinickými projevy.

Stanovení železa v séru

thumb |300px|Princip stanovení železa v séru Pro stanovení železa v séru se používají kolorimetrické metody, atomová absorpční spektrofotometrie a další speciální techniky. Nejužívanější jsou fotometrické metody, založené na reakci železa s komplexotvornou látkou. Všechny postupy zahrnují následující kroky: thumb |150px|Ferrozin

  1. Uvolnění Fe3+ z vazby na transferin pomocí kyselin nebo tenzidů (např. HCl).
  2. Redukce Fe3+ na Fe2+, která je nezbytná pro reakci s komplexotvorným činidlem. K redukci se používá např. kyselina askorbová.
  3. Reakce Fe2+ s komplexotvorným činidlem obsahujícím reaktivní skupiny –N=C–C=N– za vzniku barevného komplexu. Ionty kovu vytvářejí cheláty s dvěma atomy dusíku. V současnosti se využívají především dvě komplexotvorné látky – bathofenentrolin a ferrozin (3-(2-pyridyl)-5,6-bis(4-sulfofenyl)-1,2,4-triazin – PST, chráněný název FerroZine®), který má vyšší absorpční koeficient a je lépe rozpustný ve vodě.
Hodnocení
Koncentrace sérového železa podléhají cirkadiánnímu rytmu a jsou ovlivněny i dalšími faktory. To omezuje diagnostický význam tohoto parametru. Je špatným ukazatelem tkáňových zásob železa a je nutné ho vždy posuzovat v kombinaci se sérovým transferinem a vazebnou kapacitou pro železo. Snížené koncentrace doprovázejí nedostatek železa, způsobený např. velkými nebo opakovanými krevními ztrátami, nedostatečným příjmem železa potravou nebo narušenou absorpcí. Nález není specifický, neboť se sníženými hladinami se setkáváme rovněž u akutní infekce nebo chronických zánětlivých onemocněních (přesun železa do tkání). Vysoké hladiny železa se vyskytují u hemochromatózy (viz níže), při předávkování nebo intoxikaci železem, při zvýšeném rozpadu erytrocytů a u některých jaterních onemocnění.
Referenční hodnoty
muži: 9–29 μmol/l
ženy: 7–28 μmol/l

Sérový transferin a vazebná kapacita pro železo

Železo je transportováno krví ve vazbě na specifický protein s β1-elektroforetickou pohyblivostí – transferin, který je syntetizován v játrech. Rychlost jeho tvorby je nepřímo úměrná zásobám železa v organismu; zvyšuje se při nedostatku železa a při nadbytku klesá. Biologická funkce transferinu spočívá ve schopnosti snadno tvořit netoxické komplexy se železem a přenášet Fe absorbované sliznicí tenkého střeva do kostní dřeně nebo do zásobních forem (feritinu nebo hemosiderinu). Každá molekula transferinu váže dva atomy Fe3+ (1 g transferinu váže 25,2 μmol železa). Transferin může být stanoven přímo pomocí imunochemických metod nebo nepřímo jako schopnost transferinu vázat železo – tzv. vazebná kapacita pro železo. Celková vazebná kapacita pro železo (TIBC – total iron binding capacity) je množství železa, které je transferin schopen vázat v případě, že všechna vazebná místa jsou obsazena. Obvykle je železem nasycena pouze 1/3 transferinu – vázaná kapacita. Volný transferin bez navázaného železa představuje volnou vazebnou kapacitu (2/3 transferinu), která je k dispozici pro transport železa při zvýšených požadavcích.

Přepočet mezi koncentrací transferinu a celkovou vazebnou kapacitou:

Celková vazebná kapacita [μmol/l] = transferin [g/l] · 25,2.

Referenční rozmezí pro koncentraci transferinu v séru (S-transferin) je 2,0–3,6 g/l a pro celkovou vazebnou kapacitu je 50–70 μmol/l.

Saturace transferinu

Z hodnot koncentrace železa a transferinu můžeme vypočítat saturaci transferinu (TfS), která je definována jako poměr sérové koncentrace železa k celkové vazebné kapacitě transferinu pro železo. Jedná se o citlivý parametr pro odhalení latentního nedostatku železa.

Hodnocení saturace transferinu
fyziologické hodnoty: 25–50 %
snížení saturace při nedostatku železa: < 15 %
zvýšení saturace při nadbytku železa: > 50 %

Feritin a hemosiderin

thumb |300px|Schema struktury feritinu Feritin je nejdůležitější zásobní protein pro železo. Molekula feritinu je přizpůsobena vázat velké množství Fe3+ v rozpustné a netoxické formě pro organismus. Feritin je tvořen vnějším proteinovým obalem z 24 podjednotek – apoferitinem (Mr 440 000), ohraničujícím dutinu, ve které může být soustředěno až 4500 atomů železa ve formě oxyhydroxidu železitého (FeO·OH)n v mikrokrystalické podobě s fosfáty (FeO·OPO3H2). Vstup a výstup atomů železa umožňují póry mezi jednotlivými podjednotkami obalu molekuly feritinu. Normálně je jeho kapacita využita asi z 20 %. Ukládá se do buněk v játrech, slezině a střevní sliznici.

V krevním séru se feritin nachází ve velmi nízké koncentraci. Sérové koncentrace feritinu jsou měřítkem zásob železa v organismu. Nízké koncentrace indikují vyčerpání celkové tělesné rezervy železa a slouží k časnému odhalení anémie z nedostatku železa ještě v prelatentní fázi. Zvýšené koncentrace feritinu jsou doprovodným jevem vysokých tkáňových zásob železa. Dále se s nimi setkáváme u mnohých pacientů s onemocněním jater, některými maligními nádory (nádorový marker) nebo zánětlivými onemocněními (pozitivní reaktant akutní fáze).

Referenční rozmezí pro koncentraci feritinu v séru (S-feritin) je pro muže 30–300 μg/l a pro ženy 20–120 μg/l.

Hemosiderin je dalším zásobním proteinem pro železo. Vzniká agregací denaturovaného feritinu s dalšími komponentami. Vytváří partikule o velikosti 1 až 2 μm, které jsou při použití barvení na železo viditelné ve světelném mikroskopu. Hemosiderin obsahuje větší množství železa než feritin, ale vzhledem ke špatné rozpustnosti ve vodě je obtížně dostupné. Tvoří se za situace, kdy množství železa v organismu převýší skladovací kapacitu feritinu.

Transferinový receptor

thumb |300px|Transferinový receptor Železo transportované krví transferinem je zachycováno buňkami prostřednictvím specifického transferinového receptoru (TfR). V určitém stádiu vývoje se nachází na povrchu všech buněk, nejvíce je však exprimován na povrchu prekursorů buněk červené řady v kostní dřeni. TfR je transmembránový protein, který je tvořen dvěma identickými podjednotkami, spojenými disulfidovou vazbou. Oddělením extracelulárních domén receptoru se do cirkulace uvolňuje tzv. solubilní (rozpustná) frakce transferinového receptoru (sTfR), který může být v podobě dimeru nebo monomeru. Buňky reagují na snížení zásob železa syntézou zvýšeného množství transferinových receptorů.

Zvýšení sTfR je spolehlivým ukazatelem nedostatku železa pro krvetvorbu. Se zvýšenými hladinami sTfR se setkáváme u anemií z nedostatku železa nebo u hemolytických anemií. Cenné je stanovení sTfR u anemických pacientů, u nichž je zvýšen feritin z důvodů reakce akutní fáze. Stanovení koncentrace sTfR je možno využít i u pacientů s transplantovanou kostní dření pro sledování průběhu erytropoézy.

Ke stanovení se používají imunochemické metody.

Poruchy metabolismu železa

__

Nedostatek železa (sideropenie)

Nedostatek železa v organismu bývá zpravidla způsoben jeho nedostatečným vstřebáváním ze střeva nebo chronickými ztrátami krve. Může vyústit v sideropenickou anémii (hypochromní mikrocytární anémie), která patří mezi nejčastější hematologická onemocnění. Anémie je však zpravidla pozdní příznak postupně se vyvíjející sideropenie. V krevním obraze se projeví až po téměř úplném vymizení železa. Proto je potřebné odhalit nedostatek železa v časném stádiu, které ještě není doprovázeno anémií.

Na základě stanovení základních parametrů metabolismu železa rozlišujeme tři stupně nedostatku:

  • Prelatentní nedostatek železa je označení pro stav, kdy dochází k postupnému poklesu zásob, ale ještě není ovlivněna dodávka železa do erytroblastů kostní dřeně. Asi u poloviny nemocných jsou hladiny feritinu v séru snížené pod 12 μg/l.
  • Při latentním nedostatku železa jsou jeho zásoby v podstatě vyčerpány. Feritin je snížen pod dolní hranici normy a je v tomto stádiu již doprovázen i snížením hladiny železa v séru a sníženou dodávkou do erytroblastů kostní dřeně. Zvyšuje se vazebná kapacita pro železo. Citlivým ukazatelem latentního nedostatku železa je pokles saturace transferinu pod 15 %. Nerozvíjí se však ještě anémie.
  • Při manifestním nedostatku železa dochází k rozvoji anémie s poklesem hodnot hemoglobinu pod dolní hranici normy. U anémie z nedostatku železa je typický nález nízkého sérového železa a feritinu, je zvýšená koncentrace transferinu (vazebná kapacita pro železo). U hemolytických anémií nebo při nadbytku železa je naopak sérové železo zvýšené, současně je snížená celková vazebná kapacita pro železo.
Laboratorní nález u nedostatku železa
Prelatentní nedostatek železa Latentní nedostatek železa Manifestní nedostatek železa
snižování zásobního železa – pokles feritinu nedostatek zásobního železa – pokles feritinu nedostatek zásobního železa – pokles feritinu
snížení sérového železa snížení sérového železa
pokles saturace transferinu pod 15 % pokles transferinu pod 10 %
zvýšení celkové vazebné kapacity pro železo zvýšení celkové vazebné kapacity pro železo
zvýšení sTfR zvýšení sTfR
snížení koncentrace hemoglobinu – anémie

Nadbytek železa

Organismus není vybaven exkreční cestou pro železo, a proto se za určitých okolností může přebytečné železo hromadit ve tkáních. Včasná diagnostika může zabránit poškození tkání nadbytkem železa. Přetížení železem se rozvíjí většinou velmi pomalu. Rozlišujeme 3 stádia:

  • Ve stádiu prelatentního nadbytku železa se zvyšuje jeho obsah v orgánech, ale bez překročení jejich zásobní kapacity.
  • V období latentního stádia přetížení železem je překročena zásobní kapacita buněk, ale ještě není poškozena funkce orgánů, zvyšuje se hladina feritinu i hladina železa v séru a stoupá saturace transferinu nad 55 %.
  • Ve fázi manifestního nadbytku železa jsou již poškozeny některé orgány.
Laboratorní nález u nadbytku železa
Prelatentní nadbytek železa Latentní nadbytek železa Manifestní nadbytek železa
zvyšování zásob železa – zvýšení feritinu zvyšování zásob železa – zvýšení feritinu nad 300 μg/l zvyšování zásob železa – zvýšení feritinu (při těžkém postižení nad 2000 μg/l)
zvýšení železa v séru výrazné zvýšení železa v séru
zvýšení saturace transferinu nad 55 % zvýšení saturace transferinu (při těžkém postižení může převýšit 90 %)

Hemochromatóza

Hromadění železa v tkáních souvisí s onemocněním, které označujeme jako hemochromatóza.

  • Primární hemochromatóza je dědičné onemocnění způsobené zvýšenou resorpcí železa ze střeva. Přebytečné železo se ukládá v parenchymatózních orgánech jako jsou játra, srdce, pankreas, nadledviny. V postižených orgánech působí toxicky a narušuje jejich funkci tím, že může katalyzovat chronické reakce vedoucí k tvorbě volných radikálů. Hlavními klinickými projevy jsou hyperpigmentace kůže, hepatosplenomegalie a diabetes mellitus.
  • Sekundární hemochromatóza se může vyvinout jako následek např. opakovaných transfúzí, nadbytečného příjmu přípravků obsahujících železo nebo hemolytické anémie. V biochemickém obraze nalézáme zvyšující se hladiny feritinu a železa v séru, stoupá saturace transferinu při jeho současném poklesu.

Otrava železem

__Otrava železem

Kategorie:Vložené články Kategorie:Biochemie Kategorie:Fyziologie Kategorie:Patofyziologie Kategorie:Patobiochemie Kategorie:ToxikologieŽelezo

Úkol: Stanovení Fe v séru kolorimetrickou metodou (pdf)


Odkazy

Související články

Reference


Kategorie:Biochemie Kategorie:Fyziologie