Plasma proteins: Difference between revisions
Line 363: | Line 363: | ||
Blood serum electrophoresis usually separates proteins into 6 to 7 fractions: '''prealbumin''' (seen rarely), '''albumin''', '''α<sub>1</sub>''', '''α<sub>2</sub>''', '''β<sub>1</sub>''', '''β<sub>2</sub>''', (sometimes poorly resolved, may be seen only as β fraction), '''γ''' fractions. With the exception of albumin and prealbumin fractions which contain only single protein each, these fractions consist of multiple proteins with similar electrophoretic mobilities. | Blood serum electrophoresis usually separates proteins into 6 to 7 fractions: '''prealbumin''' (seen rarely), '''albumin''', '''α<sub>1</sub>''', '''α<sub>2</sub>''', '''β<sub>1</sub>''', '''β<sub>2</sub>''', (sometimes poorly resolved, may be seen only as β fraction), '''γ''' fractions. With the exception of albumin and prealbumin fractions which contain only single protein each, these fractions consist of multiple proteins with similar electrophoretic mobilities. | ||
=== Plasma protein concentration by electrophoretic fraction === | |||
{| class=wikitable | {| class=wikitable | ||
|+ '''Reference ranges of plasma protein concentration by electrophoretic fraction''' | |+ '''Reference ranges of plasma protein concentration by electrophoretic fraction''' |
Revision as of 21:33, 3 December 2021
This article was marked by its author as Under construction, but the last edit is older than 30 days. If you want to edit this page, please try to contact its author first (you fill find him in the history). Watch the discussion as well. If the author will not continue in work, remove the template Last update: Friday, 03 Dec 2021 at 9.33 pm. |
Proteins in blood serum or plasma are represented by many types of proteins produced by various different cells. The biosynthesis of the vast majority of plasma proteins takes place in liver, a smaller part is synthesized in other places, e.g. lymphocyte (immunoglobulins), enterocytes (e.g. apoprotein B-48) among others. Protein degradation takes place in hepatocyte and macrophages, where proteins are degraded predominantly after complex formation (e.g. antigen - antibody complex, hemoglobin - haptoglobin complex). Intracellularly, peptide bonds of proteins are hydrolyzed by proteases and peptidases to form amino acids. Another way to remove serum proteins is through the excretion of organs, especially the kidneys and gastrointestinal tract.
Total serum concentration of proteins is 65 to 85 grams per litre. Because plasma proteins are oncotically active, their physiological concentrations account for 3.33 to 3.52 kPa oncotic pressure (25 to 26.4 torr). The concentration of proteins in plasma is slightly higher then in serum because plasma contains coagulation factors.[1]
Functions of plasma proteins
Plasma proteins are necessary for a variety of blood/plasma functions:
- maintenance of oncotic pressure;
- transport of lipophilic compounds e.g. hormones (thyroid hormone bound to transtyretin; sex hormones), vitamins, lipids (bound to albumin), bilirubin bound to albumin, drugs);
- nutrition function;
- acidobasic buffer of blood;
- hemocoagulation a fibrinolysis;
- immunity
Overview of plasma proteins
|
Albumin
Albumin is the most common serum protein, it accounts for approximately 55 to 65% of total serum proteins (average blood concentration is 40 g/L[2]). Je syntetizován v játrech a jeho tvorba závisí na příjmu aminokyselin.
- Albumin is crutial for maintenance of the oncotic pressure of the plasma. Decreased albumin concentrations (hypoalbuminemia) below 20 g/L usually lead to oedemas.
- It acts as a carrier. It enables the transport of bilirubin, heme, steroid compounds, tyroxine, fatty acids, bile acids, metals, drugs, among others.
- Albumin is a protein reserve of the body and serves as a source of amino acids, especially essential amino acids for various tissues. During malnutrition, its concentration decreases, however, serum albumin levels are not a good indicator of early protein malnutrition because albumin has a long plasma half-life and large body stock. For this reason, albumin is a long-term marker of nutrition.
Synthesis of albumin
The synthesis of albumin has multiple steps. Preproalbumin, a precursor of albumin is synthesized by hepatocytes, but does not exit the cell cytoplasm. Subsequently, preproalbumin enters endoplasmatic reticulum, where it is transformed into proalbumin, the most abundant intracellular form of albumin. Then, proalbumin enters Golgi complex, where it is transformed into albumin and excreted our of the cell.[3]
Reaktanty akutní fáze
Reakce akutní fáze je fyziologický děj, který se projevuje systémovým uvolněním mediátorů zánětu, v důsledku rozvoje patologických procesů (zánět, traumata, chirurgické výkony, infarkt myokardu, porod, nádorové procesy, stres, nadměrná fyzická zátěž).
Mediátory slouží k zajištění celkové odpovědi organismu, vzájemné komunikaci a regulaci probíhajících dějů. Rovněž vytváří celkové příznaky (horečka, únava, malátnost, bolest svalů a kloubů). Klinický význam mají látky, jejichž syntéza vzniká v důsledku známé patologie, případně když jejich koncentrace koresponduje s mírou poškození tkání. Takové látky nazýváme markery (jejich stanovením můžeme potvrdit či vyloučit diagnostiku jiného onemocnění.
Význam pozitivních reaktantů akutní fáze
Soubor proteinů akutní fáze je značně různorodý. Přesto lze podle účinku většinu z nich zařadit do některé z následujících skupin:
- Složky imunitní reakce
- Některé reaktanty akutní fáze se přímo podílejí na likvidaci noxy, která způsobila zánět. Další bílkoviny mají úlohu při odstraňování poškozených buněk, nebo modulují imunitní reakci. Patří sem např.
- C-reaktivní protein,
- složky komplementu, zejména C3 a C4,
- tumor necrosis factor α (TNF-α), interleukin 1 (IL-1) a interleukin 6 (IL-6).
- Ochrana před kolaterálním poškozením tkáně
- Během akutní fáze se především z fagocytů a rozpadajících se buněk uvolňují látky, které mají zničit noxu, jež vyvolala zánět, a „rozpustit“ poškozenou tkáň. Jsou to hlavně proteolytické enzymy a reaktivní formy kyslíku. Účinek těchto látek je třeba omezit, aby působily jen tam, kde mají – tj. aby tzv. kolaterální poškození tkáně bylo co nejmenší. Mezi reaktanty akutní fáze proto najdeme
- inhibitory proteáz
- bílkoviny, které snižují tvorbu a dostupnost reaktivních forem kyslíku
- Jde nejen o scavengery reaktivních forem kyslíku v pravém slova smyslu, ale také o bílkoviny, které váží a stabilizují přechodné kovy a jejich komplexy. Tím snižují tvorbu ROS ve Fentonově reakci a podobných pochodech. Patří mezi ně
- Transport odpadních látek vznikajících během zánětu
- Kromě hemoglobinu a hemopexinu uvedených výše sem pravděpodobně patří
- sérový amyloid A (SAA).
- Koagulační faktory a bílkoviny podílející se na regeneraci tkáně, např.
Význam některých pozitivních reaktantů akutní fáze zůstává neznámý, přestože se může jednat o bílkoviny klinicky významné (používají se jako zánětlivé parametry). Zmiňme například prokalcitonin (PCT).
Rychlost změn koncentrace reaktantů akutní fáze
Plazmatická koncentrace různých reaktantů akutní fáze se mění různě rychle. Podle doby od začátku onemocnění, za niž se změní, rozdělujeme reaktanty akutní fáze do tří skupin:
Časné proteiny akutní fáze
jsou bílkoviny s velmi krátkým biologickým poločasem. Změny jejich plazmatické koncentrace jsou patrné již za 6–10 hodin po začátku onemocnění. Vzestup vrcholí obvykle v průběhu druhého a třetího dne. Hlavními představiteli jsou především C-reaktivní protein (CRP) a sérový amyloid A (SAA). Nověji se v klinické praxi používá prokalcitonin (PCT).
- C-reaktivní protein
C-reaktivní protein (CRP) je jedním z nejdůležitějších reaktantů akutní fáze. Je to bílkovina, která hraje úlohu opsoninu. Své jméno získal díky tomu, že precipituje s tzv. C-polysacharidem pneumokoků[4].
Plazmatická koncentrace CRP se zvyšuje již za 4 hodiny po navození reakce akutní fáze a v průběhu prvních dvou dnů jeho koncentrace vzroste i více než 100krát. Maximální koncentrace je dosaženo za 24–48 hodin, přibližně 24 hodin je i poločas CRP[5].
Fyziologicky bývá plazmatická koncentrace do 8 mg/l[6]. Rychlý a vysoký vzestup CRP (typicky na hodnoty nad 60 mg/l) doprovází především akutní bakteriální infekce, méně obvykle také mykotické infekce. Virové infekce naproti tomu bývají charakterizovány relativně malým vzestupem CRP (zpravidla pod 40 mg/l)[7]. Stanovení plazmatické koncentrace CRP proto napomáhá v rozhodnutí, zda zahájit léčbu antibiotiky[4]. Úspěšná antibiotická terapie se pak projeví rychlým poklesem CRP, naopak při neúspěšné léčbě přetrvává zvýšení.
Stanovením CRP lze odhalit riziko pooperační infekce. Třetí den po operaci má jeho koncentrace rychle klesat k normě. Přetrvávající zvýšení nebo jen částečný pokles, následovaný dalším zvýšením, naznačuje přítomnost infekce nebo jiné zánětlivé komplikace.
Mírný vzestup CRP provází i infarkt myokardu. Obecně lze také říci, že mírně elevované hladiny CRP (obvykle kolem 10 mg/l) patří mezi známky vysokého kardiovaskulárního rizika[8]. Sledování koncentrací CRP je užitečné i při monitorování autoimunitních onemocnění[9].
Nevýhodou CRP je jeho nízká specifita. Na rozdíl od prokalcitoninu neinformuje o tíži orgánového postižení, nýbrž pouze o přítomnosti infektu. Vzájemně jsou se tyto dva markery nenahrazují, ale doplňují.
- Prokalcitonin
V posledních letech se ve výzkumu i v klinické praxi začíná jako reaktant akutní fáze využívat prokalcitonin (PCT). Tuto bílkovinu o 116 aminokyselinách a molekulové hmotnosti 13 000 fyziologicky tvoří C buňky štítné žlázy jako prekurzor hormonu kalcitoninu. Zejména při generalizovaných bakteriálních infekcích jej však začnou produkovat i další buňky, hlavně neuroendokrinní buňky plic a střeva, ale i buňky parenchymatózních orgánů a při sepsi prakticky všechny tkáně a typy buněk[10]. Koncentrace této bílkoviny pak v plazmě prudce stoupá. PCT uvolněný při sepsi není konvertován na kalcitonin.[11] Přesný fyziologický význam prokalcitoninu není zdaleka objasněn; předpokládá se, že se podílí na regulaci zánětu a má analgetické účinky. Poločas prokalcitoninu je 1 den a po imunitní stimulaci vzrůstá jeho sérová koncentrace již během 2–3 hodin asi dvacetinásobně. Zvýšení lze pozorovat jen při generalizovaných bakteriálních, mykotických a protozoárních infekcích, neobjevuje se u virových infekcí. S méně výrazným vzestupem se lze setkat u polytraumat, popálenin a po rozsáhlých břišních operacích.
Stanovení PCT
Provádí se vysoce citlivou imunoluminometrickou metodou, PCT-LIA (Luminescence ImmunoAssay). Jde o metodu se dvěma monoklonálními protilátkami, jednou proti C-terminální sekvenci prokalcitoninu (tzv. katakalcinu) a druhou proti centrální části prokalcitoninu (tj. proti kalcitoninu). Anti-katakalcinové protilátky jsou immobilizovány na povrchu zkumavky, anti-kalcitoninové protilátky jsou značeny luminescenční sondou (derivátem akridinu). Metoda vyžaduje luminometr, je k ní třeba 20 μl séra nebo plasmy.
Jako rychá metoda se používá imunochromatografický test na prokalcitonin (PCT-Q) v séru a plasmě. Je k němu třeba 200 μl séra nebo plasmy, výsledek je k dispozici za 30 minut. Tento test se doporučuje pro rychlou diagnostiku akutní pankreatitidy.
Orientační hodnoty PCT
Normální hodnoty (ng/ml) < 0,5; chronické zánětlivé procesy < 0,5–1; bakteriální infekce komplikovaná systémovou reakcí 2–10; SIRS 5–20; těžké bakteriální infekce – sepse, MODS 10–1000. Při protrahované sepsi přetrvává zvýšená hladina PCT, zatímco hladiny některých jiných cytokinů klesají.[11]
Neinfekční příčiny zvýšení PCT
Pooperační stav, mnohočetné trauma, úraz teplem, kardiogenní šok, u novorozenců prvních 48 h po porodu.[11]
Ze srovnání PCT, CRP, IL-6 a WBC vyplývá, že ukazatelem s nejvyšší senzitivitou a specificitou pro diferenciální diagnostiku infekční a neinfekční etiologie SIRS je prokalcitonin.[12]
Proteiny akutní fáze se střední dobou odpovědi
jsou proteiny, jejichž koncentrace se mění 12–36 hodin po začátku onemocnění a maxima je dosaženo ke konci prvního týdne. Patří k nim α1-kyselý glykoprotein (orosomukoid), α1-antitrypsin, haptoglobin a fibrinogen.
Pozdní proteiny akutní fáze
jsou zastoupeny složkami komplementu C3 a C4 a ceruloplazminem, u nichž se změny rozvíjí až po 48–72 hodinách po začátku onemocnění. Vzestup koncentrací je ve srovnání s oběma předchozími skupinami proteinů méně vyjádřen a vrcholu dosahují až po 6–7 dnech.
Negativní reaktanty akutní fáze
Negativní reaktanty akutní fáze jsou bílkoviny, jejichž hladiny se v průběhu akutní zátěže snižují. Hlavními zástupci jsou albumin, prealbumin a transferin. Pro sledování a hodnocení průběhu reakce na zátěž mají menší význam než pozitivní reaktanty. Často jsou však využívány jako kritérium syntézy bílkovin v játrech a jako ukazatelé malnutrice.
Imunoglobuliny
Iron
Protilátky (imunoglobuliny) jsou specifické globuliny krevní plazmy s elektroforetickou pohyblivostí β–γ. Vznikají v plazmatických buňkách jako humorální součást imunitní reakce na určitý antigen. Molekula imunoglobulinu má schopnost specificky vázat příslušný antigen, proti kterému se vytvořila. Po vazbě vzniká imunitní komplex. Kromě toho imunoglobuliny plní další funkce zahrnující např. vazbu komplementu, vazbu na neutrofilní leukocyty a makrofágy, aktivaci fagocytózy. Imunoglobuliny dělíme na 5 tříd – IgG, IgM, IgA, IgD a IgE. U třídy IgG byly popsány ještě podtřídy – IgG-1, IgG-2, IgG-3, IgG-4, jejichž funkce se liší. Rovněž třída IgA není jednotná, tvoří ji podtřídy IgA-1 a IgA-2. Základní struktura molekuly imunoglobulinu je tvořena dvěma stejnými těžkými řetězci (H-řetězce), označovaných podle jednotlivých tříd γ, μ, α, δ a ε, a dvěma lehkými řetězci (L-řetězce) κ a λ, které jsou pro jednotlivé třídy společné. Každá molekula imunoglobulinu obsahuje buď κ nebo λ řetězce. Při první infekci baktériemi či protozoy nastupuje v průběhu 2–3 dnů tvorba protilátek IgM, která je později během 5–7 dnů vystřídána tvorbou IgG se stejnou specifitou. Opakovaná infekce způsobí rychlé zvýšení hodnot IgG a malé zvýšení koncentrace IgM. Výrazné změny množství imunoglobulinů se projeví při elektroforetickém vyšetření jako:
- hypogamaglobulinemie (snížení vrcholu v oblasti γ);
- hypergamaglobulinemie;
- polyklonální (zvýšení vrcholu β-γ globulinu o široké bázi);
- monoklonální (úzký vrchol v oblasti β-γ globulinů).
Hypogamaglobulinemie
Hypogamaglobulinemie vzniká v důsledku zvýšených ztrát imunoglobulinů močí nebo střevem. Jinou závažnou příčinou je pokles tvorby imunoglobulinů, který může postihovat všechny nebo pouze jednotlivé třídy. Tyto defekty humorální imunity mohou být primární nebo sekundární a jsou příčinou závažných imunodeficitních stavů projevujících se opakovanými infekcemi s těžkým průběhem.
Metody stanovení bílkovin v séru
Základním vyšetřením proteinů v séru nebo plazmě je stanovení jejich souhrnné koncentrace – tzv. celkové bílkoviny. Při nálezu patologických hodnot a v dalších indikovaných případech následuje podrobnější vyšetření, které zahrnuje elektroforézu sérových bílkovin, imunofixaci a cílené stanovení koncentrace vybraných sérových proteinů.
Serum protein electrophoresis
Principle
Serum protein electrophoresis (SPEP) is a separation method based on a movement of charged particles within electric field. The compounds of interest need to be charged (i.e. they must either be ions, or ampholytes). Most proteins have ampholytic nature, therefore, their net charge can be positive or negative with variance of pH of the buffer during electrophoresis. Once a mixture of various charged molecules is exposed to a stationary electric field, individual ions will start moving towards either electrodes. The velocity of movement of ions depends on following factors:
- the charge of the molecule (positive ions move towards negative electrode, negative ions move towards positive electrode).
- magnitude of charge (the higher charge, the more the molecule is attracted to the electrode; if the net charge of a molecule is equal to zero, the molecule will not move at all)
- size of the compound or relative molar mass of the compound (molecules with higher molar mass will move slower that those with lower molar mass)
- voltage
Usually, a mixture of protein is separated in electrophoresis at pH 8.6 (using akaline buffer). Because izoelektric point of most serum proteins is near 5 to 6, at pH 8.6, all proteins are negatively charged, therefore, they will move towards the anode (positive electrode).
Blood serum electrophoresis usually separates proteins into 6 to 7 fractions: prealbumin (seen rarely), albumin, α1, α2, β1, β2, (sometimes poorly resolved, may be seen only as β fraction), γ fractions. With the exception of albumin and prealbumin fractions which contain only single protein each, these fractions consist of multiple proteins with similar electrophoretic mobilities.
Plasma protein concentration by electrophoretic fraction
Fraction | Relative protein concentration (%) | Absolute protein concentration (g/L) |
---|---|---|
Albumin | 55 to 69 | 35 to 44 |
α1 | 1,5 to 4 | 1 to 3 |
α2 | 8 to 13 | 5 to 8 |
β | 7 to 15 | 4 to 10 |
γ | 9 to 18 | 5 to 12 |
Charakteristika jednotlivých frakcí
- Zóna prealbuminu
V této oblasti se pohybuje prealbumin (transtyretin), jehož zóna je však velmi diskrétní a těžko hodnotitelná.
- Zóna albuminu
Albumin vytváří poměrně širokou a z obou stran dobře ohraničenou zónu. Při poklesu koncentrace albuminu pod 30 g/l je patrné její oslabení. Vzácně pozorované zdvojení frakce je projevem genetické strukturní odchylky albuminu u heterozygotů – bisalbuminemie nebo vzniká při navázání cizorodé substance na albumin, např. penicilinu.
- Interzóna mezi albuminem a α1-globuliny
Slabé homogenní zbarvení této oblasti je podmíněno α1-lipoproteiny. Podobnou elektroforetickou pohyblivost vykazuje také α1-kyselý glykoprotein, ale zabarvení zóny ovlivňuje minimálně.
- Zóna α1-globulinů
Zónu α1-globulinů ovlivňuje především α1-antitrypsin. Při akutních zánětech je zřetelné zesílení. Klinicky významná je genetická variabilita α1-antitrypsinu, která se v elektroforéze může často zřetelně projevit oslabením, někdy až vymizením jeho zóny se současnou změnou pohyblivosti.
- Interzóna mezi α1 a α2-globuliny
Obvykle je celá slabě homogenně zbarvená.
- Zóna α2-globulinů
Na vytváření této zóny se podílejí především dvě bílkoviny – α2-makroglobulin a haptoglobin. Změny koncentrace α2-makroglobulinu nemají velký diagnostický význam. Haptoglobin vytváří 6 fenotypů, které se liší elektroforetickou pohyblivostí. Elektroforetické vyšetření neumožňuje rozlišení fenotypů haptoglobinu.
- Interzóna mezi α2 a β1-globuliny
Normálně se barví pouze slabě. Při hemolýze vznikají komplexy hemoglobin-haptoglobin, které v této oblasti vytvářejí samostatnou zónu.
- Zóna β1-globulinů
Tvar a intenzita zbarvení zóny β1-globulinů je ovlivněna prakticky pouze transferinem. Intenzita zóny dobře koreluje s celkovou vazebnou kapacitou plazmy pro železo. Při anemii z nedostatku železa a v těhotenství se zvyšuje syntéza transferinu a intenzita zóny se zesílí. Další protein s β1-elektroforetickou pohyblivostí, hemopexin, se špatně barví používanými barvivy a změny v jeho koncentraci se v elektroforéze neprojeví.
- Interzóna mezi β1 a β2-globuliny
V této oblasti nalézáme imunoglobulin IgA, který podmiňuje homogenní zbarvení zóny. Dále zde vytváří typickou linii β-lipoprotein, jejíž přítomnost závisí na jeho koncentraci.
- Zóna β2-globulinů
Na vytváření zóny β2-globulinů se podílí C3 složka komplementu. Podle intenzity zbarvení se dá těžko odhadnout koncentrace C3.
- Zóna γ-globulinů
Charakter zóny γ-globulinů je ovlivněn koncentracemi čtyř podtříd imunoglobulinu IgG. Zvýšení IgG se projeví intenzivnějším zbarvením a rozšířením zóny v obou směrech. Imunoglobulin IgM leží blíže startu. Samostatné nebo současné zvýšení koncentrace IgM pomocí elektroforézy nerozpoznáme.
Klinické využití
Elektroforéza sérových bílkovin (ELFO) se provádí zejména, zjistíme-li patologický výsledek celkové bílkoviny, nebo potřebujeme-li podrobnější informaci o sérových bílkovinách. Zvlášť cenné je pro průkaz:
- dysproteinemie – změna koncentrace a kvalitativního složení jednotlivých bílkovin v séru,
- paraproteinemie – charakterizována přítomností monoklonálních imunoglobulinů.
ELFO u některých patologických stavů
Typ elektroforeogramu | Komentář | Alb | α1 | α2 | β | γ | Výskyt (příklad) |
---|---|---|---|---|---|---|---|
Akutní zánět |
|
300px |
| ||||
↓ nebo N | ↑ | ↑ | N | ||||
Chronický zánět |
|
300px |
| ||||
↓ nebo N | N | N | N | ↑ | |||
Chronický aktivní zánět |
|
300px |
| ||||
↓ | ↑ | ↑ | N | ↑ | |||
Hepatální typ |
|
300px |
| ||||
↓ | ↓ | ↓ | ↓ | ↑ | |||
Nefrotický typ |
|
300px |
| ||||
↓ | N | ↑ | ↑ | ↓ nebo N | |||
Hypogamaglobulinemie |
|
300px |
| ||||
N | N | N | N | ↓ | |||
Monoklonální gamapatie |
|
300px |
| ||||
↓ | ↓ | ↓ | ↑ | ↑ |