Shock (pediatrics): Difference between revisions
Feedback

From WikiLectures

(Created page with "https://www.wikiskripta.eu/index.php?curid=25502 '''Shock''' is defined as a disproportion between the need and supply of oxygen to the tissues. It is a micro and/or...")
 
No edit summary
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
https://www.wikiskripta.eu/index.php?curid=25502
'''[[Shock]]''' is defined as a disproportion between the need and supply of [[oxygen]] to the tissues. It is a micro and/or macrocirculation disorder that leads to failure of tissue perfusion, [[oxygen]] consumption and energy metabolism of cells. Insufficient oxygen supply leads to a shift of aerobic metabolism to a less efficient anaerobic metabolism, [[MAC|lactic acidosis]] occurs. The [[Brain]] does not have the capacity for anaerobic metabolism, and that is why it is seriously affected when there is a lack of oxygen.
'''[[Shock]]''' is defined as a disproportion between the need and supply of [[oxygen]] to the tissues. It is a micro and/or macrocirculation disorder that leads to failure of tissue perfusion, [[oxygen]] consumption and energy metabolism of cells. Insufficient oxygen supply leads to a shift of aerobic metabolism to a less efficient anaerobic metabolism, [[MAC|lactic acidosis]] occurs. The [[Brain]] does not have the capacity for anaerobic metabolism, and that is why it is seriously affected when there is a lack of oxygen.


The most common form of ''shock in children'' is hypovolemic and septic shock.
The most common form of '''shock in children''' is hypovolemic and septic shock.


As stated above, the measure of shock is perfusion impairment. The following table gives the answer to the question of which clinical condition can already be considered as shock.
As stated above, the measure of shock is perfusion impairment. The following table gives the answer to the question of which clinical condition can already be considered as shock.
Line 41: Line 39:
* '''C<sub>a</sub>O<sub>2</sub> = (Hb x 1.34 x S<sub>a</sub>O<sub>2</sub>) + (0.003 x P<sub>a</sub>O<sub>2</sub>)'''
* '''C<sub>a</sub>O<sub>2</sub> = (Hb x 1.34 x S<sub>a</sub>O<sub>2</sub>) + (0.003 x P<sub>a</sub>O<sub>2</sub>)'''
* '''C<sub>v</sub>O<sub>2</sub> = (Hb x 1.34 x S<sub>v</sub>O<sub>2</sub>) + (0.003 x P<sub>v</sub>O<sub>2</sub>)'''
* '''C<sub>v</sub>O<sub>2</sub> = (Hb x 1.34 x S<sub>v</sub>O<sub>2</sub>) + (0.003 x P<sub>v</sub>O<sub>2</sub>)'''
* '''a - v DO<sub>2</sub> = C<sub>a</sub>O<sub>2</sub> - C<sub>v</sub>O<sub>2 </sub>
* '''a - v DO<sub>2</sub> = C<sub>a</sub>O<sub>2</sub> - C<sub>v</sub>O<sub>2 </sub>'''
''''
<small>
<small>
* DO<sub>2</sub> = oxygen delivery, represents oxygen delivered by tissue per minute, reference values DO<sub>2</sub> = 550-650 ml/min/m<sup>2</sup>
* DO<sub>2</sub> = oxygen delivery, represents oxygen delivered by tissue per minute, reference values DO<sub>2</sub> = 550-650 ml/min/m<sup>2</sup>
Line 57: Line 54:
* Hb = [[hemoglobin]], it is given in the amount of g/dl</small>
* Hb = [[hemoglobin]], it is given in the amount of g/dl</small>


=== Spotřeba kyslíku (oxygen consumption, oxygen uptake, VO<sub>2</sub>) ===
=== Oxygen consumption (oxygen consumption, oxygen uptake, VO<sub>2</sub>) ===
Mírou spotřeby O<sub>2</sub> je VO<sub>2</sub> (oxygen consumption, oxygen uptake), referenční hodnoty VO<sub>2</sub> (index) = 120 – 200 ml/min/m<sup>2</sup>
The rate of O<sub>2</sub> consumption is VO<sub>2</sub> (oxygen consumption, oxygen uptake), reference values VO<sub>2</sub> (index) = 120 – 200 ml/min /m<sup>2</sup>


;VO<sub>2</sub> (index) = CI x (C<sub>a</sub>O<sub>2</sub> - CvO<sub>2</sub>) × 10
;VO<sub>2</sub> (index) = CI x (C<sub>a</sub>O<sub>2</sub> - CvO<sub>2</sub>) × 10


Základním úkolem kardiopulmonální jednotky je zabezpečit rovnováhu mezi DO<sub>2</sub> a VO<sub>2</sub>. '''Rovnováhu určuje:'''
The basic task of the cardiopulmonary unit is to ensure the balance between DO<sub>2</sub> and VO<sub>2</sub>. '''Equilibrium is determined by:'''
* obsah kyslíku ve smíšené venózní krvi C<sub>v</sub>O<sub>2</sub>
* oxygen content in mixed venous blood C<sub>v</sub>O<sub>2</sub>
* extrakce O<sub>2</sub> (oxygen extraction, O<sub>2</sub>ER), tj. podíl mezi množstvím spotřebovaného a dodaného kyslíku VO<sub>2</sub> / DO<sub>2</sub>, které se vyjadřuje v procentech. Normální jsou hodnoty extrakce kolem 25 %, ale při výrazně zvýšené potřebě tkání nebo snížené perfúzi může extrakce O<sub>2</sub> stoupnout k 50 %. V rámci šokových stavů se snažíme udržovat extrakci kyslíku pod 30 %.  
* O<sub>2</sub> extraction (oxygen extraction, O<sub>2</sub>ER), i.e. the ratio between the amount of consumed and delivered oxygen VO<sub>2</sub> / DO<sub> 2</sub>, which is expressed as a percentage. Normal extraction values are around 25%, but with significantly increased tissue demand or reduced perfusion, O<sub>2</sub> extraction can rise to 50%. As part of the shock states, we try to keep the oxygen extraction below 30%.


;O<sub>2</sub>ER = VO<sub>2</sub> / DO<sub>2</sub>  
;O<sub>2</sub>ER = VO<sub>2</sub> / DO<sub>2</sub>
 
CvO<sub>2</sub> i O<sub>2</sub>ER závisí na hodnotách saturace smíšené žilní krve SvO<sub>2</sub> a srdečním výdeji CO. CO/CI závisí na hodnotě srdeční frekvence a tepovém objemu (ten je určen preloadem, afterloadem a kontraktilitou). Zvýšení [[srdeční frekvence]], zlepšení kontraktility a relaxace [[myokard]]u v [[diastola|diastole]], optimalizace preloadu a afterloadu zvyšují CO/CI. Kapacita přenášeného kyslíku může být zlepšena optimalizací hematokritu. U kriticky nemocných dětí, ale ve stabilním stavu jako hraniční pro [[Krevní transfúze|transfúzi]] považujeme hodnotu hemoglobinu 70 g/l. Zlepšením všech těchto parametrů může být navýšena DO<sub>2</sub>. V některých specifických situacích ([[horečka]], high flow stadium [[sepse]], [[trauma]], [[thyreotoxikosa]]) mohou metabolické potřeby převýšit i normální DO<sub>2</sub>.


Both CvO<sub>2</sub> and O<sub>2</sub>ER depend on the mixed venous blood saturation values of SvO<sub>2</sub> and cardiac CO output. CO/CI depends on heart rate value and stroke volume (the latter is determined by preload, afterload and contractility). Increasing [[heart rate]], improving [[myocardial]] contractility and relaxation in [[diastole|diastole]], optimizing preload and afterload increase CO/CI. Oxygen carrying capacity can be improved by optimizing hematocrit. For critically ill children, but in a stable condition, we consider a hemoglobin value of 70 g/l as the borderline for [[Blood transfusion|transfusion]]. By improving all these parameters, DO<sub>2</sub> can be increased. In some specific situations ([[fever]], high flow stage [[sepsis]], [[trauma]], [[thyrotoxicosis]]) metabolic needs can exceed even normal DO<sub>2</sub>.
{| class="wikitable"
{| class="wikitable"
|+ Základní fyziologické výpočty ventilace
  |+ Basic physiological calculations of ventilation
|-
  |-
! !! jednotka !! norma
  ! !! unit !! standard
|-
  |-
! C<sub>a</sub>O<sub>2</sub>
  ! C<sub>a</sub>O<sub>2</sub>
| ml || 17–20
  | ml || 17–20
|-
  |-
! C<sub>v</sub>O<sub>2</sub>
  ! C<sub>v</sub>O<sub>2</sub>
| ml || 12–15
  | ml || 12-15
|-
  |-
! a-vDO<sub>2</sub>
  ! α-vDO<sub>2</sub>
| ml/dl || 3–5
  | ml/dL || 3–5
|-
  |-
! DO<sub>2</sub> (index)
  ! DO<sub>2</sub> (index)
| ml/min/m<sup>2</sup> || 550–650  
  | ml/min/m<sup>2</sup> || 550–650
|-
  |-
! VO<sub>2</sub> (index)
  ! VO<sub>2</sub> (index)
| ml/min/m<sup>2</sup> || 120–200
  | ml/min/m<sup>2</sup> || 120–200
|-
  |-
! O<sub>2</sub>ER
  ! O<sub>2</sub>ER
| % || 20–35
  | % || 20–35
|}
|}


Při nedostatečném přívodu O<sub>2</sub> mohou některé buňky krýt svou potřebu energie anaerobní [[glykolýza|glykolýzou]], tj. přeměnou [[glukóza|glukózy]] na [[laktát|kyselinu mléčnou]]. Přitom ale energetická účinnost je nepatrná (2 [[ATP]] na glukózu ve srovnání s 36 ATP při [[oxidace|oxidativním spalování]]). Disociace mléčné kyseliny na H<sup>+</sup> a laktát potom vede k rozvoji [[MAC]]. Nedostatek energie působí nejprve omezení funkce buněk a nakonec jejich irreverzibilní poškození. Stejně tak šok je stavem vyvolaným těžkou a rozsáhlou redukcí efektivní tkáňové perfúze vedoucí nejprve k reverzibilnímu, později k irreverzibilnímu postižení buněk. Efektivní tkáňová perfúze může být redukována globálně, tj. snížením minutového srdečního výdeje nebo zvýšením neefektivní regionální perfúze na základě poruch distribuce krevního průtoku či poruchou utilizace substrátů na buněčné úrovni.
With insufficient supply of O<sub>2</sub>, some cells can cover their energy needs by anaerobic [[glycolysis|glycolysis]], i.e. by converting [[glucose|glucose]] into [[lactate|lactic acid]]. However, the energy efficiency is negligible (2 [[ATP]] per glucose compared to 36 ATP in [[oxidation|oxidative combustion]]). The dissociation of lactic acid into H<sup>+</sup> and lactate then leads to the development of [[MAC]]. The lack of energy first causes the limitation of cell function and finally their irreversible damage. Likewise, shock is a condition caused by a severe and extensive reduction in effective tissue perfusion leading first to reversible, then irreversible cell damage. Effective tissue perfusion can be reduced globally, i.e. by reducing the minute cardiac output or increasing inefficient regional perfusion based on blood flow distribution disorders or substrate utilization disorders at the cellular level.


Faktory, které určují efektivitu tkáňové perfúze, mohou pochopitelně vyvolat šok i v případě, že dojde izolovaně k jejich závažnému postižení. Ve většině případů, především v pozdějších formách šoku, jde o projevy multifaktoriálního poškození.
Factors that determine the effectiveness of tissue perfusion can understandably cause shock even if they are severely affected in isolation. In most cases, especially in later forms of shock, these are manifestations of multifactorial damage.
'''Determinanty efektivní tkáňové perfúze''' je možné řadit do 4 hlavních kategorií:
'''Determinants of effective tissue perfusion''' can be classified into 4 main categories:
# veličiny ovlivňující výkonnost srdečního svalu;
# quantities affecting the performance of the heart muscle;
# efektivní krevní volum;
# effective blood volume;
# faktory ovlivňující vaskulární rezistenci a permeabilitu (a tím pádem distribuci cirkulujícího objemu krve);
# factors affecting vascular resistance and permeability (and thus the distribution of circulating blood volume);
# faktory ovlivňující využitelnost kyslíku na úrovni buněčné.
# factors affecting the availability of oxygen at the cellular level.


Z praktického hlediska je třeba si uvědomit, že šok může být přítomen při normálním, sníženém nebo zvýšeném srdečním výdeji, při normálním, sníženém či zvýšeném [[TK]].
From a practical point of view, it should be noted that shock can be present with normal, decreased or increased cardiac output, with normal, decreased or increased [[BP]].


U dětí jde zpočátku často o šok hypodynamický = low flow se sníženým CO/CI a naopak vysokou periferní systémovou rezistencí (výjimku představuje iniciální fáze septického šoku, [[jaterní selhání]], thyreotoxická krize apod.).
In children, at first it is often hypodynamic shock = low flow with reduced CO/CI and, conversely, high peripheral systemic resistance (the exception is the initial phase of septic shock, [[hepatic failure]], thyrotoxic crisis, etc.).


== [[Fyziologie a patofyziologie šoku (pediatrie)|Fyziologické a patofyziologické poznámky]] ==
== [[Physiology and Pathophysiology of Shock (Pediatrics)|Physiology and Pathophysiology Notes]] ==
{{Edituj článek|Fyziologie a patofyziologie šoku (pediatrie)}}
{{Edit article|Physiology and pathophysiology of shock (pediatrics)}}
{{:Fyziologie a patofyziologie šoku (pediatrie)}}
{{:Physiology and Pathophysiology of Shock (Paediatrics)}}


== [[Klasifikace šoku (pediatrie)|Klasifikace šoku]] ==
== [[Shock classification (pediatrics)|Shock classification]] ==
{{Edituj článek|Klasifikace šoku (pediatrie)}}
{{Edit article|Shock classification (pediatrics)}}
{{:Klasifikace šoku (pediatrie)}}
{{:Shock classification (pediatrics)}}


== [[Hypovolemický šok (pediatrie)|Šok hypovolemický]] ==
== [[Hypovolemic shock (pediatrics)|Hypovolemic shock]] ==
{{Edituj článek|Hypovolemický šok (pediatrie)}}
{{Edit article|Hypovolemic shock (pediatrics)}}
{{:Hypovolemický šok (pediatrie)}}
{{:Hypovolemic shock (pediatrics)}}


== [[Distribuční šok (pediatrie)|Šok distribuční]] ==
== [[Distributive shock (pediatrics)|Distributive shock]] ==
{{Edituj článek|Distribuční šok (pediatrie)}}
{{Edit article|Distribution shock (pediatrics)}}
{{:Distribuční šok (pediatrie)}}
{{:Distributive shock (pediatrics)}}


== [[Obstrukční šok (pediatrie)|Šok obstrukční]] ==
== [[Obstructive shock (pediatrics)|Obstructive shock]] ==
{{Edituj článek|Obstrukční šok (pediatrie)}}
{{Edit article|Obstructive shock (pediatrics)}}
{{:Obstrukční šok (pediatrie)}}
{{:Obstructive shock (pediatrics)}}


== [[Kardiogenní šok (pediatrie)|Šok kardiogenní]] ==
== [[Cardiogenic shock (pediatrics)|Cardiogenic shock]] ==
{{Edituj článek|Kardiogenní šok (pediatrie)}}
{{Edit article|Cardiogenic shock (pediatrics)}}
{{:Kardiogenní šok (pediatrie)}}
{{:Cardiogenic shock (pediatrics)}}


== [[Disociační šok (pediatrie)|Šok dissociační]] ==
== [[Dissociative shock (pediatrics)|Dissociative shock]] ==
{{Edituj článek|Disociační šok (pediatrie)}}
{{Edit article|Dissociative shock (pediatrics)}}
{{:Disociační šok (pediatrie)}}
{{:Dissociative Shock (Pediatrics)}}


== Monitoring/diagnostický management ==
== Monitoring/diagnostic management ==
=== Oběh a ventilace ===
=== Circulation and ventilation ===
Nutno monitorovat srdeční frekvenci, [[tlak krve]] invazivně – IBP (sledovat hodnoty MAP a perfusion pressure), prostřednictvím [[CVK]] potom CVP a S<sub>vc</sub>O<sub>2</sub>, kontinuální monitoring [[EKG]] a [[pulzní oxymetrie]].  
It is necessary to monitor the heart rate, [[blood pressure]] invasively – IBP (monitor MAP and perfusion pressure values), via [[CVK]] then CVP and S<sub>vc</sub>O<sub>2</sub> , continuous [[ECG]] and [[pulse oximetry]] monitoring.


Indikace k zavedení Swan-Ganzova katétru jsou v pediatrii extrémně vzácné (těžká forma [[ARDS]] s použitím PEEP > 10 cmH<sub>2</sub>O, monitoring pacientů po některých korekcích [[Vrozené srdeční vady|VVV srdce]]). Swan-Ganz katetr je též zvažován u pacientů, kteří zůstávají v šoku navzdory léčbě upravující perfuzní tlak, ale S<sub>vc</sub>O<sub>2</sub> je < 70 %. Vzhledem k invazivitě a riziku zavedení plicnicového katétru se dnes jednoznačně preferují semiinvazivní možnosti měření srdečního výdeje, např. metoda PiCCO, která umožňuje i stanovení a výpočty dalších hemodynamicky důležitých parametrů.
Indications for the introduction of a Swan-Ganz catheter are extremely rare in pediatrics (severe form [[ARDS]] using PEEP > 10 cmH<sub>2</sub>O, monitoring of patients after some corrections [[Congenital heart defects|VVV heart] ]). A Swan-Ganz catheter is also considered in patients who remain in shock despite pressure-correcting therapy but S<sub>vc</sub>O<sub>2</sub> is < 70%. Due to the invasiveness and risk of introducing a pulmonary catheter, semi-invasive options for measuring cardiac output are clearly preferred today, e.g. the PiCCO method, which also enables the determination and calculation of other hemodynamically important parameters.


Intermitentně kontrolujeme krevní plyny a [[ABR]] z arteriální krve (arteriální linka). Výhodou je monitoring etCO<sub>2</sub> při [[UPV]], který dovoluje snížit frekvenci krevních odběrů.
We intermittently check blood gases and [[ABR]] from arterial blood (arterial line). The advantage is etCO<sub>2</sub> monitoring during [[UPV]], which allows to reduce the frequency of blood sampling.


V rámci ventilace potom sledujeme dechovou frekvenci a při aplikaci UPV řadu parametrů v závislosti na použití tlakové či objemové ventilace. Vždy ale sledujeme PFi = pO<sub>2</sub> / FiO<sub>2</sub>, oxygenační index = (FiO<sub>2</sub>x Pmaw) / pO<sub>2</sub>, compliance plic a rezistence, parametr Vd/Vt.
As part of the ventilation, we then monitor the respiratory frequency and, when applying UPV, a number of parameters depending on the use of pressure or volume ventilation. But we always follow PFi = pO<sub>2</sub> / FiO<sub>2</sub>, oxygenation index = (FiO<sub>2</sub>x Pmaw) / pO<sub>2</sub >, lung compliance and resistance, Vd/Vt parameter.


Standardním vyšetřením bývá RTG hrudníku, echokardiografie a EKG (12ti svodový záznam). V prostředí intenzivní péče se jedná o tzv. '''bed-side monitoring'''.
Standard examinations are chest X-ray, echocardiography and ECG (12-lead recording). In the intensive care environment, this is the so-called '''bed-side monitoring'''.


==== [[Neinvazivní monitoring krevního tlaku (pediatrie)|Neinvazivní monitoring krevního tlaku (NIBP)]] ====
==== [[Non-invasive blood pressure monitoring (pediatrics)|Non-invasive blood pressure monitoring (NIBP)]] ====
{{Edituj článek|Neinvazivní monitoring krevního tlaku (pediatrie)}}
{{Edit article|Non-invasive blood pressure monitoring (pediatrics)}}
{{:Neinvazivní monitoring krevního tlaku (pediatrie)}}
{{:Non-invasive blood pressure monitoring (pediatrics)}}


===== [[Pulse pressure (pediatrie)|Pulse pressure (PulP)]] =====
===== [[Pulse pressure (pediatrics)|Pulse pressure (PulP)]] =====
{{Edituj článek|Pulse pressure (pediatrie)}}
{{Edit article|Pulse pressure (pediatrics)}}
{{:Pulse pressure (pediatrie)}}
{{:Pulse pressure (pediatrics)}}


==== [[Invazivní monitoring tlaku krve (pediatrie)|Invazivní monitoring tlaku krve (IBP)]] ====
==== [[Invasive blood pressure monitoring (pediatrics)|Invasive blood pressure monitoring (IBP)]] ====
{{Edituj článek|Invazivní monitoring tlaku krve (pediatrie)}}
{{Edit article|Invasive blood pressure monitoring (pediatrics)}}
{{:Invazivní monitoring tlaku krve (pediatrie)}}
{{:Invasive blood pressure monitoring (pediatrics)}}


==== [[Hemodynamická měření (pediatrie)|Hemodynamika]] ====
==== [[Hemodynamic Measurements (Pediatrics)|Hemodynamics]] ====
{{Edituj článek|Hemodynamická měření (pediatrie)}}
{{Edit article|Hemodynamic measurements (pediatrics)}}
{{:Hemodynamická měření (pediatrie)}}
{{:Hemodynamic measurements (pediatrics)}}


=== Vědomí ===
=== Consciousness ===
V rámci šokového stavu může být ''porucha vědomí'' vyjádřena velmi rozmanitě, jak z hlediska kvalitativního, tak kvantitativního. Pro objektivizaci slouží klasifikační škály: [[Benešovo skóre]] a především [[Glasgowská stupnice hloubky bezvědomí|Glasgow coma scale]] (GCS).
Within the framework of the shock state, the "impairment of consciousness" can be expressed in many different ways, both qualitatively and quantitatively. Classification scales are used for objectification: [[Beneš score]] and above all [[Glasgow coma scale|Glasgow coma scale]] (GCS).


Sledujeme stav zornic, [[kmenové reflexy|kmenových reflexů]] (nazopalpebrální, korneální), stav svalového tonu, ev. dle potřeby kompletní neurologické sledování. Pokud stav vyžaduje "absolutní" monitoring funkce [[CNS]], využíváme kontinuálního [[Elektroencefalografie|EEG]], intraparenchymatózního měření [[ICP|intrakraniálního tlaku]] (ICP), multimodální intraparenchymatózní senzory (monitorují pH, pCO<sub>2</sub> a pO<sub>2</sub>), monitoring saturace krve v jugulárním bulbu S<sub>vj</sub>O<sub>2</sub>, transkraniální dopplerovskou [[USG|ultrasonografii]], spektroskopii pomocí blízkého infračerveného záření (near infrared spectroscopy = NIRS), ev. mikrodialýzu.
We monitor the state of the pupils, [[stem reflexes|stem reflexes]] (nasopalpebral, corneal), the state of muscle tone, possibly complete neurological monitoring as needed. If the condition requires "absolute" monitoring of [[CNS]] function, we use continuous [[Electroencephalography|EEG]], intraparenchymatous measurement of [[ICP|intracranial pressure]] (ICP), multimodal intraparenchymatous sensors (monitor pH, pCO<sub>2 </sub> and pO<sub>2</sub>), monitoring of blood saturation in the jugular bulb S<sub>vj</sub>O<sub>2</sub>, transcranial Doppler [[USG|ultrasonography]], spectroscopy using near infrared radiation (near infrared spectroscopy = NIRS), ev. microdialysis.
Jsou-li indikovány zobrazovací metody, upřednostňujeme [[CT]] a [[MRI]].
When imaging methods are indicated, we prefer [[CT]] and [[MRI]].


=== Laboratoř ===
=== Laboratory ===
V rámci '''biochemického monitoringu''' vyšetřujeme: [[krevní obraz|KO]] + diff. (ev. i [[krevní skupina|krevní skupinu]]), [[kreatinin]], [[urea|ureu]], [[iontogram]], [[jaterní testy]], S-amylázu, [[glykémie|glykémii]], [[albumin]], [[laktát]], [[osmolalita séra|S-osmolalitu]] a [[koagulace|hemokoagulace]].  
As part of '''biochemical monitoring''' we investigate: [[blood count|KO]] + diff. (possibly also [[blood group|blood group]]), [[creatinine]], [[urea|urea]], [[iontogram]], [[liver tests]], S-amylase, [[glycemia| glycemia]], [[albumin]], [[lactate]], [[serum osmolality|S-osmolality]] and [[coagulation|hemocoagulation]].


Z '''vyšetření moče''' nás zajímá chemismus a sediment, močová [[osmolalita]], odpady iontů, kreatininu a urey. [[Hyperosmolární]] [[moč]] s nízkou natriurézou prokazujeme při deficitu efektivně obíhajícího volumu nebo naopak [[hypoosmolární]] moč s vysokou natriurézou při [[Akutní selhání ledvin|akutním renálním selhání]] (shock kidney). Markerem postižení endotelu je průkaz mikroalbuminurie. Zásadním vyšetřením před započetím ev. [[ATB|antibiotické]] terapie je odběr kultivací ([[hemokultura]], moč, [[likvor]], hnisavé kolekce – [[pleurální exsudát]], kloubní výpotek, punkce [[absces]]u aj.). Z obecného hlediska prokazujeme laktátovou [[MAC]], kdy laktát je > 2 mmol/l, rozšíření [[anion gap]]u a pokles [[bikarbonát]]u. Specificita hyperlaktacidémie bohužel není vysoká, prostá hodnota laktátu neodhalí regionální poruchy perfúze, hladina laktátu je závislá i na hepatální produkci. S ohledem na tyto aspekty se jako výhodnější pro posouzení orgánové perfúze jeví moderní metoda [[gastrická tonometrie|gastrické tonometrie]].
We are interested in chemistry and sediment, urinary [[osmolality]], waste ions, creatinine and urea from '''urine examination'''. [[Hyperosmolar]] [[urine]] with low natriuresis is demonstrated in the case of a deficit of effective circulating volume or, conversely, [[hypoosmolar]] urine with high natriuresis in [[Acute renal failure|acute renal failure]] (shock kidney). Evidence of microalbuminuria is a marker of endothelial damage. A fundamental examination before starting ev. [[ATB|antibiotic]] therapy is collection by cultures ([[blood culture]], urine, [[CSF]], purulent collections - [[pleural exudate]], joint effusion, puncture of [[abscess]], etc.). From a general point of view, we demonstrate a lactate [[MAC]], when lactate is > 2 mmol/l, a widening of the [[anion gap]] and a decrease of [[bicarbonate]]. Unfortunately, the specificity of hyperlactacidemia is not high, a simple lactate value does not reveal regional perfusion disorders, the lactate level also depends on hepatic production. Considering these aspects, the modern method [[gastric tonometry|gastric tonometry]] appears to be more advantageous for assessing organ perfusion.


Hodnota '''glykémie''' může být zvýšená (častěji) nebo snížená. [[Hyperglykémie]] je způsobena rezistencí inzulinových receptorů na [[inzulin]].  
The value of "glycemia" can be increased (more often) or decreased. [[Hyperglycemia]] is caused by insulin receptor resistance to [[insulin]].


Změny osmolality séra a biochemismu krve jsou v závislosti od vyvolávající příčiny šokového stavu. Náhlý pokles [[leukocyt]]ů může svědčit o poruše integrity cévní stěny. Nález [[hypofosfatémie]] svědčí o velké poruše intracelulárního metabolismu, neboť [[fosfor]] je cenný intracelulární iont.
Changes in serum osmolality and blood biochemistry are dependent on the precipitating cause of the shock state. A sudden decrease in [[leukocytes]] can indicate a violation of the integrity of the vascular wall. The finding of [[hypophosphatemia]] indicates a major disorder of intracellular metabolism, as [[phosphorus]] is a valuable intracellular ion.


Nezbytné je sledovat '''diurézu''', u šokového stavu vždy hodinovou diurézu s 6ti hodinovou bilancí tekutin. To znamená bezpodmínečné zavedení močového katétru. Dobrá diuréza je vynikajícím odrazem dostatečnosti orgánové perfúze. Ale pozor dostatečná diuréza může být zavádějící u polyurického typu akutního renálního selhání.  
It is essential to monitor "diuresis", in the case of a shock state always an hourly diuresis with a 6-hour fluid balance. This means the unconditional insertion of a urinary catheter. A good diuresis is an excellent reflection of the adequacy of organ perfusion. But beware sufficient diuresis can be misleading in the polyuric type of acute renal failure.
Dále sledujeme periferní a centrální tělesnou teplotu, v rámci komplexní diagnostiky i zánětlivé markery (zejm. [[CRP]] a [[prokalcitonin]]).
We also monitor peripheral and central body temperature, as well as inflammatory markers (especially [[CRP]] and [[procalcitonin]]) as part of comprehensive diagnostics.


=== Gastrointestinální trakt ===
=== Gastrointestinal tract ===
Vždy zavádíme [[Nazogastrická sonda|nasogastrickou sondu]] (NGS). Zprvu ji využíváme k dekompresi GIT a odsávání žaludečního obsahu jako prevenci možné [[aspirace]]. Zavedení NGS je zcela zásadní u pacientů s podezřením na [[Náhlé příhody břišní|náhlou příhodu břišní]], kde nesmíme podávat nic p. o. nebo u pacientů po tonutí, kde je vysoké riziko aspirace.
We always insert a [[Nasogastric tube|Nasogastric tube]] (NGS). At first, we use it to decompress the GIT and suction the stomach contents to prevent possible [[aspiration]]. The implementation of NGS is absolutely essential in patients with suspected [[Sudden abdominal events|sudden abdominal events]] where we must not give anything p.o., or in patients after drowning where there is a high risk of aspiration.


Postupně je NGS využívána jako cesta enterální výživy. Při žaludeční atonii je nutné realizovat [[Enterální výživa (pediatrie)|enterální výživu]] cestou nazojejunální sondy (v tomto případě již nelze využít bolusové podávání stravy, ale kontinuální krmení – zpravidla 21 hodin s tříhodinovou pauzou).
Gradually, NGS is used as a way of enteral nutrition. In the case of gastric atony, it is necessary to implement [[Enteral nutrition (pediatrics)|enteral nutrition]] via a nasojejunal tube (in this case, bolus feeding can no longer be used, but continuous feeding - usually 21 hours with a three-hour break).
   
   
Základem je sledování peristaltiky, hodnocení zbytků v sondě, registrace počtu a charakteru stolic. [[Vyšetření stolice]] využíváme na kultivaci, průkaz [[Haemoccult|okultního krvácení]] nebo průkaz clostridiového antigenu a toxinu (''[[Clostridium difficile]]''). Zobrazovacím vyšetřením největšího významu je beze sporu [[sonografie]].
The basis is the monitoring of peristalsis, evaluation of residues in the probe, registration of the number and nature of stools. [[Stool examination]] is used for culture, proof of [[Haemoccult|occult bleeding]] or proof of clostridial antigen and toxin (''[[Clostridium difficile]]''). The most important imaging examination is undoubtedly [[sonography]].


V rámci funkce jater monitorujeme kompletní [[jaterní testy]] ([[bilirubin]] přímý i nepřímý, [[transaminázy]], [[Gama-glutamyltransferáza|GMT]], [[ALP]], [[LDH]], cholinesterázu), amoniak, koagulace (zejm. [[Quickův test|Quick]] a fibrinogen), [[albumin]], [[glykémie|glykémii]] a [[urea|ureu]].
As part of liver function, we monitor complete [[liver tests]] ([[bilirubin]] direct and indirect, [[transaminases]], [[Gamma-glutamyltransferase|GMT]], [[ALP]], [[LDH]], cholinesterase), ammonia, coagulation (especially [[Quick's test|Quick]] and fibrinogen), [[albumin]], [[glycemia|glycemia]] and [[urea|urea]].


K posouzení orgánové perfúze je vhodná moderní metoda gastrické tonometrie. Její výhodou je odhalení regionální hypoperfúze postihující trávicí trakt (jako prototyp splanchnické cirkulace), výhodou je též kontinuální měření. Tato metoda však předpokládá, že hypoperfuze splanchnické oblasti bude předcházet systémové perfuzi. Nevýhodou této metody je její relativní invazivita.
The modern method of gastric tonometry is suitable for assessing organ perfusion. Its advantage is the detection of regional hypoperfusion affecting the digestive tract (as a prototype of splanchnic circulation), the advantage is also continuous measurement. However, this method assumes that hypoperfusion of the splanchnic region will precede systemic perfusion. The disadvantage of this method is its relative invasiveness.


=== Metody monitorující regionální perfúzi ===
=== Methods monitoring regional perfusion ===
Hodnoty sérového [[laktát]]u či hodnoty definující [[MAC]] jsou odrazem globální situace a navíc jejich výsledky jsou limitovány většinou odběrem venózní krve. V popředí zájmu jsou metody definující regionální perfúzi a zároveň minimálně invazivní: [[gastrická tonometrie]], [[NIRS]] (near-infrared spectroscopy), [[rektální tonometrie]], sublinguální kapnometrie. Všechny tyto metody jsou ve stadiu výzkumu a jejich rutinní použití není t.č. doporučeno.
The values of serum [[lactate]] or the values defining [[MAC]] are a reflection of the global situation and, moreover, their results are mostly limited by the collection of venous blood. Methods defining regional perfusion and at the same time minimally invasive are in the foreground: [[gastric tonometry]], [[NIRS]] (near-infrared spectroscopy), [[rectal tonometry]], sublingual capnometry. All these methods are in the research stage and their routine use is not part of the article. recommended.


=== [[Principy péče o pacienta v šoku (pediatrie)|Hlavní principy péče o pacienty v šoku]] ===
=== [[Principles of care for patients in shock (pediatrics)|Main principles of care for patients in shock]] ===
{{Edituj článek|Principy péče o pacienta v šoku (pediatrie)}}
{{Edit article|Principles of care for the patient in shock (pediatrics)}}
{{:Principy péče o pacienta v šoku (pediatrie)}}
{{:Principles of care for the patient in shock (pediatrics)}}


== [[Klinické známky šoku (pediatrie)|Symptomatologie šokových stavů]] ==
== [[Clinical signs of shock (pediatrics)|Symptomatology of shock states]] ==
{{Edituj článek|Klinické známky šoku (pediatrie)}}
{{Edit article|Clinical signs of shock (pediatrics)}}
{{:Klinické známky šoku (pediatrie)}}
{{:Clinical signs of shock (pediatrics)}}


== Terapeutické intervence ==
== Therapeutic interventions ==
=== Zajištění pacienta ===
=== Patient Assurance ===
Základním krokem v přístupu k pacientovi v šokovém stavu je zabezpečit průchodnost dýchacích cest, podávat 100% kyslík, dle potřeby ventilovat maskou s ambuvakem nebo pacienta [[intubace|intubovat]] a dle možnosti co nejdříve zahájit [[Umělá plicní ventilace|UPV]]. Bez ohledu na etiologii šokového stavu je třeba se vždy rychle rozhodnout pro ventilační a oběhovou podporu. Zavedení UPV není u šokových stavů obecně uplatňováno jen na základě diagnózy globální [[respirační insuficience]], ale hypermetabolismus, hyperkinetický oběh, rezistentní [[metabolická acidóza]], [[porucha vědomí]] a extrémní dechová práce mohou vést k rozhodnutí o adekvátním zajištění dítěte. Intubaci a UPV proto indikujeme časně (v obecné rovině raději dříve než později). Je nutno dítě neponechávat příliš dlouho v respiračním distressu. UPV dovoluje redistribuci [[srdeční výdej|srdečního výdeje]] z oblasti respiračního svalstva směrem k vitálním orgánům, navíc UPV s pozitivním tlakem redukuje [[afterload]] a může navýšit tepový objem. Nevýhodu přináší UPV u pacientů s hypovolémií, kdy při ventilaci pozitivním tlakem dále klesá [[preload]] a může se manifestovat [[hypotenze]].
The basic step in approaching a patient in a state of shock is to ensure the patency of the airways, administer 100% oxygen, ventilate with an ambuvac mask if necessary or [[intubate|intubate]] the patient and, if possible, start [[Artificial pulmonary ventilation|UPV]] as soon as possible. . Regardless of the etiology of the shock state, quick decisions should always be made for ventilatory and circulatory support. The introduction of UPV in shock states is not generally applied only on the basis of a diagnosis of global [[respiratory insufficiency]], but hypermetabolism, hyperkinetic circulation, resistant [[metabolic acidosis]], [[impaired consciousness]] and extreme work of breathing may lead to a decision on adequate provision of the child. We therefore indicate early intubation and UPV (in general, sooner rather than later). It is necessary not to leave the child in respiratory distress for too long. UPV allows redistribution of [[cardiac output|cardiac output]] from the respiratory muscle area toward vital organs, plus positive pressure UPV reduces [[afterload]] and can increase stroke volume. The disadvantage of UPV in patients with hypovolemia is that during positive pressure ventilation [[preload]] continues to decrease and [[hypotension]] can manifest.


Svědčí-li [[anamnéza]] nebo klinické vyšetření pro [[pneumothorax]] či [[hemothorax]], zvážíme urgentnost provedení pleurální punkce.
If the [[anamnesis]] or clinical examination indicates [[pneumothorax]] or [[hemothorax]], we will consider the urgency of performing a pleural puncture.
Současně je nutno zabezpečit cirkulaci, tj. zajistit nitrožilní (ideální jsou 2 i.v. linky) nebo intraoseální vstup. U [[novorozenec|novorozenců]] preferujeme kanylaci v. umbilicalis. U dětí > 6 let je alternativou při nemožnosti zajistit i.v. vstup [[kanylace centrálního venózního řečiště]], pokud je k dispozici zkušený lékař, který techniku ovládá a pacient je v prostředí, kde je možno urgentně řešit i komplikace vzniklé kanylací. Po základním zajištění vstupu do oběhu je stejně dalším krokem elektivní zajištění [[CVK]] a arteriální linky.
At the same time, it is necessary to ensure circulation, i.e. ensure intravenous (2 IV lines are ideal) or intraosseous access. In [[neonate|neonates]], we prefer umbilical vein cannulation. For children > 6 years old, an alternative is when it is impossible to provide i.v. entry [[cannulation of the central venous course]], if an experienced doctor who controls the technique is available and the patient is in an environment where complications arising from the cannulation can be dealt with urgently. After the basic securing of entry into the circulation, the next step is the elective securing of the [[CVK]] and arterial line.
Cílem je dosažení CI 3,3–6 l/min/m<sup>2</sup> a spotřeby kyslíku VO<sub>2</sub> (oxygen consumption) > 200 ml/min/m<sup>2</sup>. Doporučená hodnota [[Hb]] pro šokové stavy je cca 100 g/l, Ht 0,30–0,40.
The goal is to achieve CI 3.3–6 l/min/m<sup>2</sup> and oxygen consumption VO<sub>2</sub> (oxygen consumption) > 200 ml/min/m<sup>2 /vul>. The recommended [[Hb]] value for shock states is approx. 100 g/l, Ht 0.30–0.40.


=== [[Volumoterapie při šokovém stavu (pediatrie)|Volumoterapie]] ===
=== [[Volume therapy in shock (pediatrics)|Volume therapy]] ===
{{Edituj článek|Volumoterapie při šokovém stavu (pediatrie)}}
{{Edit article|Volume therapy in shock (pediatrics)}}
{{:Volumoterapie při šokovém stavu (pediatrie)}}
{{:Volume therapy in shock (pediatrics)}}


=== Inokonstrikční a inodilatační léčba ===
=== Inoconstriction and inodilation treatment ===
Základním cílem podání těchto látek je zvýšit tkáňovou perfúzi a udržet perfuzní gradienty, předpokladem jejich účinku je však dostatečná náplň cévního řečiště. Podání inodilatačních látek u hypovolemického pacienta může způsobit závažné komplikace vzniklou [[hypotenze|hypotenzí]] či [[tachyarytmie|tachyarytmií]]. Podání látek inokonstrikčních zase není v běžných dávkách účinné. Vazopresory by měly být titrovány podle perfuzního tlaku nebo systémové vaskulární rezistence tak, aby byla optimální diuréza a fyziologická [[clearance kreatininu]].
The basic goal of the administration of these substances is to increase tissue perfusion and maintain perfusion gradients, however, a prerequisite for their effect is sufficient filling of the vascular bed. The administration of inodilating substances in a hypovolemic patient can cause serious complications resulting from [[hypotension|hypotension]] or [[tachyarrhythmia|tachyarrhythmia]]. Administration of inoconstrictive substances is not effective in normal doses. Vasopressors should be titrated according to perfusion pressure or systemic vascular resistance so that diuresis and physiologic [[creatinine clearance]] are optimal.


Je třeba si uvědomit, že pokud je šok komplikován [[myokard]]iální dysfunkcí, potom preparáty s pozitivním inotropním účinkem (zvyšující kontraktilitu) mohou snížit preload i afterload, zlepšit dodávku kyslíku myokardu prostřednictvím zvýšení koronárního perfuzního tlaku. Koronární průtok se také zlepší prodloužením diastolické fáze při snížení srdeční frekvence. Pokud ovšem farmaka s pozitivním inotropním účinkem podáme u pacienta s normální srdeční kontraktilitou, výsledkem může být zvýšená konzumpce kyslíku myokardem.
It should be noted that if the shock is complicated by [[myocardial]]ial dysfunction, then preparations with a positive inotropic effect (increasing contractility) can reduce preload and afterload, improve myocardial oxygen supply by increasing coronary perfusion pressure. Coronary flow is also improved by lengthening the diastolic phase while lowering the heart rate. However, if a drug with a positive inotropic effect is administered to a patient with normal cardiac contractility, the result may be increased myocardial oxygen consumption.


Normální reaktivitu myokardu i cévního systému zajistíme i tím, že udržujeme normální [[ABR|acidobazické poměry]] a hladiny elektrolytů, zvláště [[draslík]]u, [[hořčík]]u a [[vápník]]u. Inokonstriktory či inodilatátory podáváme zpravidla lineárním dávkovačem. Při řešení oběhových komplikací kriticky nemocných užíváme jedné nebo dvou látek, výjimečně většího počtu. Působení na jednotlivé receptory je v některých případech závislé na dávce (např. [[dopamin]], [[adrenalin]]) a jejich přívod do systémového řečiště by měl být zcela oddělen od látek ostatních. S výhodou používáme pro tento účel vícecestných [[CVK|centrálních žilních katétrů]]. Roztoky [[katecholaminy|katecholaminů]] je třeba chránit před světlem a při jejich podávání vyžadujeme intraarteriální měření [[TK]]. Podání do periferních žil způsobuje brzy reaktivní zánět. Do periferního řečiště lze podávat pouze dobutamin, ostatní katecholaminy jen krátkodobě a při maximálním naředění.
We also ensure normal reactivity of the myocardium and vascular system by maintaining normal [[ABR|acid-base ratios]] and electrolyte levels, especially [[potassium]]u, [[magnesium]]u and [[calcium]]u. Inoconstrictors or inodilators are usually administered with a linear dispenser. When dealing with circulatory complications in critically ill patients, we use one or two substances, exceptionally a larger number. The effect on individual receptors is in some cases dose-dependent (e.g. [[dopamine]], [[adrenaline]]) and their introduction into the systemic circulation should be completely separated from other substances. We preferably use multi-channel [[CVK|central venous catheters]] for this purpose. [[Catecholamine|Catecholamine]] solutions must be protected from light and we require intra-arterial [[BP]] measurement when administered. Administration into peripheral veins causes early reactive inflammation. Only dobutamine, other catecholamines can only be administered into the peripheral watercourse for a short time and with maximum dilution.


Z klinického pohledu je možné rozdělovat skupinu inotropních látek na látky '''inokonstrikční''' ([[noradrenalin]], adrenalin, dopamin) a látky '''inodilatační''' (dopexamin, dobutamin, izopreterenol). Specifickou skupinou inotropních látek jsou blokátory fosfodiesterázy III (PDE III) = inodilatátory v užším slova smyslu.  
From a clinical point of view, it is possible to divide the group of inotropic substances into substances that are '''inoconstrictive''' ([[noradrenaline]], adrenaline, dopamine) and substances that are '''inodilatory''' (dopexamine, dobutamine, isopreterenol). A specific group of inotropic substances are phosphodiesterase III blockers (PDE III) = inodilators in the narrower sense of the word.
Katecholaminy stimulují α-1, α-2, β-1, β-2 a dopaminergní = ɗ-receptory a vedou ke zvýšení [[cAMP]] (cyklického adenosin monofosfátu), inhibitory PDE III zvyšují cAMP zabráněním jeho degradace uvnitř buněk.
Catecholamines stimulate α-1, α-2, β-1, β-2 and dopaminergic = ɗ-receptors and lead to an increase in [[cAMP]] (cyclic adenosine monophosphate), PDE III inhibitors increase cAMP by preventing its degradation inside cells.


==== Mechanismus účinku ====
==== Mechanism of action ====
Adrenergní receptory představuje 8 [[gen]]ových subtypů, z praktického hlediska však rozlišujeme α-1, α-2, β-1, β-2 a ɗ-1 a ɗ-2 receptory.
Adrenergic receptors are represented by 8 [[gene]] subtypes, but from a practical point of view we distinguish α-1, α-2, β-1, β-2 and ɗ-1 and ɗ-2 receptors.


'''β-1''' i '''β-2''' receptory jsou umístěny ve svalovině komorového [[myokard]]u a svalovině síní. β-2 receptory jsou navíc umístěny na presynaptických zakončeních sympatických nervů a stimulují uvolnění neuromediátorů. V hladké svalovině cév vede aktivace β-2 receptorů k vazodilataci, v hladké svalovině [[bronchy|bronchů]] k bronchodilataci (mechanismem relaxace hladké svaloviny). β-2 receptory v SA uzlu jsou zodpovědné za pozitivně chronotropní účinek.
Both '''β-1''' and '''β-2''' receptors are located in the ventricular [[myocardium]] muscle and the atrial muscle. In addition, β-2 receptors are located on the presynaptic endings of sympathetic nerves and stimulate the release of neurotransmitters. In the smooth muscle of blood vessels, activation of β-2 receptors leads to vasodilation, in the smooth muscle of [[bronchi|bronchi]] to bronchodilation (through the mechanism of smooth muscle relaxation). β-2 receptors in the SA node are responsible for the positive chronotropic effect.
β-1 stimulací myokardu se nezvyšuje pouze [[inotropie]] (síla kontrakce), ale i v různém stupni [[chronotropie]] (zvýšení srdeční frekvence), [[dromotropie]] (zvýšení rychlosti převodu) a [[bathmotropie]] (zvýšení dráždivosti).
β-1 stimulation of the myocardium increases not only [[inotropy]] (force of contraction), but also varying degrees of [[chronotropy]] (increased heart rate), [[dromotropy]] (increased conduction velocity) and [[bathmotropy]] (increase in irritability).


'''α-1''' receptory nacházíme především v hladké svalovině cév, kde způsobují vazokonstrikci. α-1 receptory nalézáme však i ve svalovině myokardu. Jejich podráždění má pozitivně inotropní efekt, ale nemá vliv na srdeční frekvenci.
'''α-1''' receptors are mainly found in the smooth muscle of blood vessels, where they cause vasoconstriction. However, α-1 receptors are also found in the muscle of the myocardium. Their irritation has a positive inotropic effect, but does not affect the heart rate.
α receptory byly původně diferencované s ohledem na jejich umístění na nervových zakončeních. Postsynaptický receptor byl označen jako α-1 a presynaptický receptor jako α-2. Stimulace α-1 receptoru vede ke kontrakci hladké svaloviny, kdežto stimulace '''α-2''' receptoru inhibuje uvolňování noradrenalinu z presynaptických granulí, podporuje tedy vazodilataci.
α receptors were originally differentiated with respect to their location on nerve endings. The postsynaptic receptor was designated as α-1 and the presynaptic receptor as α-2. Stimulation of the α-1 receptor leads to the contraction of smooth muscle, while stimulation of the '''α-2''' receptor inhibits the release of noradrenaline from presynaptic granules, thus promoting vasodilation.


'''Dopaminergní''' (delta) receptory jsou rozděleny stejně jako ostatní na postsynaptické ɗ-1 a presynaptické ɗ-2. ɗ-1 receptory jsou umístěny v hladké svalovině renálních, splanchnických, koronárních a cerebrálních cév. Jejich aktivace vede k vazodilataci. ɗ-2 receptory inhibují uvolňování noradrenalinu ze sympatických zakončení.
'''Dopaminergic''' (delta) receptors are divided like others into postsynaptic ɗ-1 and presynaptic ɗ-2. ɗ-1 receptors are located in the smooth muscle of renal, splanchnic, coronary and cerebral vessels. Their activation leads to vasodilation. ɗ-2 receptors inhibit the release of noradrenaline from sympathetic endings.


Mechanismus účinku '''blokátorů fosfodiesterázy''' je založen na tom, že normálně je cAMP inaktivován fosfodiesterázou, která způsobuje jeho konverzi na AMP. Inhibice fosfodiesterázy zvyšuje koncentraci cAMP a zvyšuje aktivitu zprostředkovanou β-receptory.
The mechanism of action of '''phosphodiesterase blockers''' is based on the fact that normally cAMP is inactivated by phosphodiesterase, which causes its conversion to AMP. Inhibition of phosphodiesterase increases cAMP concentration and enhances β-receptor mediated activity.


==== Poruchy funkce receptorů ====
==== Disorders of receptor function ====
V rámci poruchy receptorů je nejlépe popsán mechanismus snížení senzitivity receptorů na principu agonisty mediované desenzitizace. Během sekund až minut po navázání agonisty na receptor může dojít k rozpojení z důvodu fosforylace receptoru (na fosforylaci se podílí více mechanismů). Vedle agonisty mediované desenzitizace existují další faktory, které se podílejí na tzv. down-regulaci: [[endotoxin]], [[TNF]], kongestivní [[srdeční selhání]]. Dalším mechanismem down-regulace receptorů je jejich sekvestrace uvnitř cílových buněk a jejich následná degradace.
As part of the receptor disorder, the mechanism of reducing the sensitivity of receptors is best described on the principle of agonist-mediated desensitization. Within seconds to minutes after agonist binding to the receptor, uncoupling may occur due to receptor phosphorylation (phosphorylation involves multiple mechanisms). In addition to agonist-mediated desensitization, there are other factors involved in so-called down-regulation: [[endotoxin]], [[TNF]], congestive [[heart failure]]. Another mechanism of down-regulation of receptors is their sequestration inside target cells and their subsequent degradation.


==== Inokonstriktory ====
==== Inoconstrictors ====
===== [[Adrenalin]] =====
===== [[Adrenaline]] =====
Adrenalin vzniká ve dřeni nadledvin ([[tyrozin]] -> [[DOPA]] -> [[dopamin]] -> [[noradrenalin]] -> [[adrenalin]]). Adrenalin je potentní, přímo působící agonista receptorů α-1, β-1 a β-2.  
Adrenaline is produced in the adrenal medulla ([[tyrosine]] -> [[DOPA]] -> [[dopamine]] -> [[noradrenaline]] -> [[adrenaline]]). Adrenaline is a potent, directly acting α-1, β-1 and β-2 receptor agonist.


Adrenalin v nízkých koncentracích ovlivňuje nejprve β-2 receptory. Potencuje aktivitu SA uzlu, zvyšuje srdeční frekvenci, napomáhá vazodilataci, tedy poklesu SVRI a klesá diastolický [[tlak krve]]. Pokles SVRI dále zvyšuje přímý chronotropní efekt adrenalinu. Bohužel zvýšená spotřeba [[kyslík]]u [[myokard]]em je neúměrná zvýšení inotropie a tím klesá výkonnost myokardu. Se stoupající koncentrací rychle nastupuje složka α-1, β-1. Stimulací α-1 receptorů, dochází k vzestupu SVRI (významně v oblasti splanchniku) a současně i plicní vaskulární rezistence. Vysoké dávky adrenalinu nebo jeho použití u pacientů s [[myokarditida|myokarditidou]] či [[infarkt myokardu|infarktem]] mohou vést k rozvoji závažných síňových a ventrikulárních [[arytmie|dysrytmií]].
Adrenaline in low concentrations first affects β-2 receptors. It potentiates the activity of the SA node, increases the heart rate, helps vasodilation, i.e. a decrease in SVRI and decreases diastolic [[blood pressure]]. A decrease in SVRI further increases the direct chronotropic effect of adrenaline. Unfortunately, the increased consumption of [[oxygen]] by the [[myocardium]] is a disproportionate increase in inotropy and thus decreases myocardial performance. As the concentration increases, the α-1, β-1 component rapidly enters. Stimulation of α-1 receptors leads to an increase in SVRI (significantly in the area of the splanchnic) and at the same time pulmonary vascular resistance. High doses of adrenaline or its use in patients with [[myocarditis|myocarditis]] or [[myocardial infarction|infarction]] can lead to the development of severe atrial and ventricular [[arrhythmias|dysrhythmias]].


V praxi kombinace β-2 efektu, který snižuje diastolický tlak a α-1 efektu, který zvyšuje tlak systolický zvyšuje hodnotu pulse pressure.
In practice, the combination of the β-2 effect, which lowers diastolic pressure, and the α-1 effect, which increases systolic pressure, increases the pulse pressure value.


Při [[stres]]u, kdy je vyplavováno velké množství adrenalinu, může velmi rychle dojít k desensitizaci receptorů, ještě před zahájením podávání exogenního adrenalinu.
During [[stress]], when a large amount of adrenaline is flushed out, receptors can be desensitized very quickly, even before exogenous adrenaline administration begins.


Adrenalin je určen k léčbě [[šok]]u ve spojení s myokardiální dysfunkcí, zejm. u pacientů po úspěšné [[Základní neodkladná resuscitace|kardiopulmonální resuscitaci]] nebo po hypoxicko-ischemickém inzultu. U septických pacientů, kde nedošlo ke zlepšení stavu po volumexpanzi, dopaminu či dobutaminu může mít kontinuální infuze adrenalinu profit. Adrenalin je nejužitečnější u stavů s hypotenzí, nízkým [[CI]] a vysokým [[SVRI]] (cold shock = low flow). V nízkých dávkách 0,005–0,1 μg/kg/min mírně klesá SVRI, naopak stoupá srdeční frekvence, tlak krve a [[srdeční výdej]]. Ve středních dávkách 0,1–1,0 μg/kg/min. začíná převládat α-1 adrenergní aktivita a další zvýšení CO balancuje s dosud přetrvávající vazodilatací (navozenou aktivací β-2 receptorů), která, jak již bylo uvedeno, vede k poklesu diastolického tlaku. Ve velmi vysokých dávkách (> 1–2 μg/kg/min.) převažuje již vazokonstrikce aktivací α-1 receptorů, perfuze splanchniku se významně snižuje, stoupá [[afterload]] a může se snižovat funkce myokardu s elevací sérového [[laktát]]u.
Adrenaline is intended for the treatment of [[shock]] in connection with myocardial dysfunction, especially in patients after successful [[Basic emergency resuscitation|cardiopulmonary resuscitation]] or after a hypoxic-ischemic insult. In septic patients, where there was no improvement in the condition after volume expansion, continuous infusion of adrenaline can be beneficial. Adrenaline is most useful in conditions with hypotension, low [[CI]] and high [[SVRI]] (cold shock = low flow). At low doses of 0.005–0.1 μg/kg/min, SVRI slightly decreases, but heart rate, blood pressure, and [[cardiac output]] increase. In medium doses of 0.1–1.0 μg/kg/min. α-1 adrenergic activity begins to predominate and the further increase in CO balances the still persistent vasodilation (induced by the activation of β-2 receptors), which, as already mentioned, leads to a decrease in diastolic pressure. In very high doses (> 1–2 μg/kg/min.), vasoconstriction by activation of α-1 receptors predominates, splanchnic perfusion is significantly reduced, [[afterload]] increases, and myocardial function may decrease with elevation of serum [[lactate] ]at.


V rámci kardiopulmonální resuscitace, kdy podáváme bolusově vysoké dávky, využíváme právě α-1 aktivity, která přináší mohutnou vazokonstrikci všude, vyjma koronárního a cerebrálního řečiště, současně vede k vzestupu SF, TK a cévní rezistence. Adrenalin podáváme bolusově v dávce 0,01 mg/kg (10 μg/kg). Dříve doporučované následné 10-ti násobně vyšší dávky (tzv. high dose epinephrine) již nejsou doporučovány. Intraoseálně podáváme stejnou dávku, intratracheálně podáváme 0,1 mg/kg.
As part of cardiopulmonary resuscitation, when we administer bolus high doses, we use precisely α-1 activity, which brings massive vasoconstriction everywhere, except for the coronary and cerebral blood vessels, at the same time leading to an increase in SF, BP and vascular resistance. Adrenaline is administered as a bolus dose of 0.01 mg/kg (10 μg/kg). Previously recommended subsequent 10-fold higher doses (so-called high dose epinephrine) are no longer recommended. The same dose is given intraosseously, 0.1 mg/kg is given intratracheally.
Adrenalin má řadu nežádoucích účinků. V rámci [[CNS]] vede k anxietě, [[nauzea|nauzee]]. Vysoké dávky mohou vyvolat [[ICHS|ischémii myokardu]], [[arytmie]]. Ventrikulární tachykardie jsou sice v dětském věku vzácné, ale častěji se objevují při současné [[myokarditida|myokarditidě]], [[hypokalémie|hypokalémii]] a [[hypoxémie|hypoxémii]]. Adrenalin se prezentuje i významnými metabolickými účinky: stimulace β-2 receptorů, které jsou spojeny s Na-K-ATPázou ve svalech vede k hypokalémii (infuze 0,1 μg/kg/min. vede k poklesu kalemie o 0,8 mmol/l). Výsledkem β-adrenergně mediované suprese [[inzulin]]u je [[hyperglykémie]]. Adrenalin je degradován monoaminooxidázou nebo katechol-o-methyltransferázou.
Adrenaline has a number of side effects. Within the [[CNS]] it leads to anxiety, [[nausea|nausea]]. High doses can cause [[ICHD|myocardial ischemia]], [[arrhythmias]]. Although ventricular tachycardia is rare in childhood, it occurs more often with concomitant [[myocarditis|myocarditis]], [[hypokalemia|hypokalemia]] and [[hypoxemia|hypoxemia]]. Adrenaline also has significant metabolic effects: stimulation of β-2 receptors, which are associated with Na-K-ATPase in muscles, leads to hypokalemia (infusion of 0.1 μg/kg/min. leads to a decrease in potassium by 0.8 mmol/l ). β-adrenergic mediated suppression of [[insulin]] results in [[hyperglycemia]]. Adrenaline is degraded by monoamine oxidase or catechol-o-methyltransferase.
Doporučené dávkování je 0,005–2,0 μg/kg/min, v rámci kardiopulmonální resuscitace podáváme 10 μg/kg i.v. jako bolus. Adrenalin je stabilní při ředění do 5 % glukózy nebo 1/1 FR.
The recommended dosage is 0.005–2.0 μg/kg/min, as part of cardiopulmonary resuscitation we administer 10 μg/kg i.v. as a bolus. Adrenaline is stable when diluted to 5% glucose or 1/1 FR.


;Indikace :
'''Indications:'''
* [[Šok (pediatrie)|šok]] ve spojení s myokardiální dysfunkcí, zejm. u pacientů po úspěšné kardiopulmonální resuscitaci nebo po hypoxicko-ischemickém inzultu.
* [[Shock (pediatrics)|shock]] in association with myocardial dysfunction, especially in patients after successful cardiopulmonary resuscitation or after a hypoxic-ischemic insult.
* [[sepse]], kde nedošlo ke zlepšení stavu po volumexpanzi, dopaminu či dobutaminu a přetrvává vysoká SVRI (low flow).  
* [[sepsis]], where the condition did not improve after volume expansion, dopamine or dobutamine and high SVRI (low flow) persists.
* stavy s hypotenzí, nízkým CI a vysokým SVRI.  
* conditions with hypotension, low CI and high SVRI.
* [[kardiopulmonální resuscitace]]
* [[cardiopulmonary resuscitation]]


===== [[Noradrenalin]] =====
===== [[Noradrenaline]] =====
Noradrenalin je potentní inotropní látka s přímým účinkem na receptory β-1 a α-1. Má mocný vazokonstrikční účinek, neboť α-adrenergní stimulace není oponována β-2 efektem. Noradrenalin nezvyšuje srdeční frekvenci, neboť reflexně přes [[nervus vagus]] snižuje aktivitu SA uzlu a tím eliminuje očekávaný β-1 chronotropní efekt. Noradrenalin má i mocný
Noradrenaline is a potent inotropic substance with a direct effect on β-1 and α-1 receptors. It has a powerful vasoconstrictive effect, as α-adrenergic stimulation is not opposed by the β-2 effect. Noradrenaline does not increase the heart rate, as it reflexively reduces the activity of the SA node through the [[vagus nerve]] and thus eliminates the expected β-1 chronotropic effect. Noradrenaline is also powerful
inotropní účinek. Zvyšuje hlavně diastolický [[TK]] a diurézu. Zvýšení [[afterload]]u má tendenci zvýšit konsumpci [[kyslík]]u v [[myokard]]u, nicméně noradrenalin reflexně snižuje srdeční frekvenci a tím redukuje spotřebu kyslíku v myokardu a zlepšuje koronární průtok v diastole. Nemá žádný β-2 agonistický efekt. Je jedním z nejvíce užívaných farmak v léčbě oběhové nedostatečnosti v resuscitační péči. Je dnes vazokonstriktorem první volby. Noradreanlin zlepšuje perfuzi u dětí s těžkou hypotenzí při nízkém SVRI a normálním nebo zvýšeném CI. Typickou volbou je [[septický šok (pediatrie)|septický]] nebo [[anafylaktický šok (pediatrie)|anafylaktický šok]]. Noradrenalin, tak jako i ostatní [[katecholaminy]], by měl být podáván až po doplnění deplece volumu, ideálně u pacientů, kde lze hodnotit jak SVRI, tak CO/CI. U dětí je noradrenalin doporučován u high flow formy šoku, který je refrakterní na volumexpanzi a dopamin.  
inotropic effect. It mainly increases diastolic [[BP]] and diuresis. An increase in [[afterload]] tends to increase [[oxygen]] consumption in the [[myocardium]], however noradrenaline reflexly reduces heart rate and thereby reduces myocardial oxygen consumption and improves coronary flow in diastole. It has no β-2 agonist effect. It is one of the most widely used drugs in the treatment of circulatory insufficiency in resuscitation care. It is the vasoconstrictor of first choice today. Noradrenaline improves perfusion in severely hypotensive children with low SVRI and normal or elevated CI. Typical choices are [[septic shock (pediatrics)|septic]] or [[anaphylactic shock (pediatrics)|anaphylactic shock]]. Noradrenaline, like other [[catecholamines]], should be administered only after volume depletion has been completed, ideally in patients where both SVRI and CO/CI can be assessed. In children, noradrenaline is recommended for the high flow form of shock, which is refractory to volume expansion and dopamine.
Na druhé straně noradrenalin může zvýšit krevní tlak aniž by vedl ke zlepšení orgánové perfúze. Typickými případy jsou nízký CI, nedostatečná volumexpanze, zvýšení PAWP. Použití vysokých dávek noradrenalinu, které zvýší tlak, ale nezlepší orgánovou perfuzi může přispět k rozvoji [[Syndrom multiorgánové dysfunkce|MODS]].
On the other hand, norepinephrine can increase blood pressure without improving organ perfusion. Typical cases are low CI, insufficient volume expansion, increase in PAWP. The use of high doses of norepinephrine, which increase pressure but do not improve organ perfusion, may contribute to the development of [[Multiorgan Dysfunction Syndrome|MODS]].
Obecně ale platí, že limitací horních dávek noradrenalinu/adrenalinu je výskyt nežádoucích účinků, tj. ischémie myokardu, tachykardie a [[arytmie|arytmií]]. Při extravazaci urychleně infiltrujeme postiženou tkáň fentolaminem (5 10 mg v 10 ml 1/1 FR).
In general, however, the limitation of upper doses of noradrenaline/adrenaline is the occurrence of adverse effects, i.e. myocardial ischemia, tachycardia and [[arrhythmia|arrhythmias]]. In case of extravasation, we quickly infiltrate the affected tissue with phentolamine (5 to 10 mg in 10 ml 1/1 FR).
Doporučené dávkování je 0,01 1,0 μg/kg/min. Velká šíře doporučení je dána potřebou titračního kontinuálního podávání noradrenalinu. Noradrenalin je stabilní při ředění do 5 % glukózy.
The recommended dosage is 0.01 to 1.0 μg/kg/min. The wide range of recommendations is due to the need for titration of continuous noradrenaline administration. Noradrenaline is stable when diluted to 5% glucose.


;Indikace :
'''Indications:'''
* nejfrekventněji užívaný lék v léčbě oběhové nedostatečnosti v resuscitační péči, je dnes vazokonstriktorem první volby
* the most frequently used drug in the treatment of circulatory insufficiency in resuscitation care, it is today the vasoconstrictor of first choice
* těžká hypotenze při nízkém SVRI a normálním nebo zvýšeném CI (septický nebo anafylaktický šok)
* severe hypotension with low SVRI and normal or elevated CI (septic or anaphylactic shock)
* high flow forma šoku, který je refrakterní na volumexpanzi a dopamin.
* high flow form of shock that is refractory to volume expansion and dopamine.


===== [[Dopamin]] =====
===== [[Dopamine]] =====
Dopamin je centrálním neurotransmiterem, nachází se také v zakončení sympatických nervů a ve dřeni [[nadledviny|nadledvin]], kde je rychle použitelným prekurzorem pro vznik noradrenalinu. Dopamin ovlivňuje D1 a D2 receptory (dopa receptory), které jsou lokalizovány v mozku a cévním řečišti [[ledviny|ledvin]], splanchniku a [[srdce]]. Dle dávky rovněž stimuluje α + β receptory, ale afinita k těmto receptorům je nižší. Stimulace D-1 receptorů vede k vazodilataci, zvýšení perfúze, v ledvinách může zvyšovat exkreci solutů a vody. Nicméně metaanalytické studie potvrzují, že tzv. renální dávky dopaminu 2,5 5 μg/kg/min. nejsou doporučovány, protože se nepotvrdil jejich protektivní efekt na zvýšení renální perfúze (''Intensive Care Med 2002''). Ovlivněním D-2 receptorů dopamin reguluje uvolňování aldosteronu a prolaktinu a rovněž ovlivňuje renální clearance solutů. Fakt, že [[novorozenec|novorozenci]] a [[kojenec|kojenci]] vykazují nižší senzitivitu vůči dopaminu je tradován, ale není definitivně potvrzen.
Dopamine is a central neurotransmitter, it is also found in sympathetic nerve endings and in the [[adrenal]] medulla, where it is a rapidly usable precursor for the formation of noradrenaline. Dopamine affects D1 and D2 receptors (dopa receptors), which are located in the brain and vascular bed [[kidney|kidney]], splanchnic and [[heart]. Depending on the dose, it also stimulates α + β receptors, but the affinity for these receptors is lower. Stimulation of D-1 receptors leads to vasodilation, increased perfusion, and can increase the excretion of solutes and water in the kidneys. However, meta-analytic studies confirm that so-called renal doses of dopamine of 2.5 to 5 μg/kg/min. they are not recommended because their protective effect on increasing renal perfusion has not been confirmed (''Intensive Care Med 2002''). By influencing D-2 receptors, dopamine regulates the release of aldosterone and prolactin and also affects the renal clearance of solutes. The fact that [[neonates|newborns]] and [[infant|infants]] show lower sensitivity to dopamine is a tradition, but not definitively confirmed.
Dopamin je doporučen jako lék první volby u dětí v [[septický šok (pediatrie)|septickém šoku]], kde selhala volumexpanze, dopamin je vhodný u dětí s lehkou myokardiální dysfunkcí a hypotenzí po kardiopulmonální resuscitaci. Těžká porucha kontraktility nebo vazomotoriky vyžaduje použití jiných katecholaminů. Děti s primární myokardiální dysfunkcí a při absenci hypotenze mají větší profit z podání dobutaminu nebo milrinonu.
Dopamine is recommended as the drug of first choice in children in [[septic shock (pediatrics)|septic shock]] where volume expansion has failed, dopamine is suitable in children with mild myocardial dysfunction and hypotension after cardiopulmonary resuscitation. Severe contractility or vasomotor impairment requires the use of other catecholamines. Children with primary myocardial dysfunction and in the absence of hypotension benefit more from administration of dobutamine or milrinone.
V dávce pod 5 μg/kg/min převažují účinky ovlivněním D-1 receptorů, v dávce 5 10 μg/kg/min vykazuje β-1 adrenergní účinky, v dávkách 10 15 μg/kg/min má smíšený α + β účinek. Zvýšení dávky na > 15 μg/kg/min. vede ke zvýšené stimulaci α-1 receptorů, zvyšování dávky > 22–25 μg/kg/min. již nemá význam a nutno zvolit jiné inotropikum.
At a dose below 5 μg/kg/min, the effects are dominated by influencing D-1 receptors, at a dose of 5 to 10 μg/kg/min, β-1 shows adrenergic effects, at doses of 10 to 15 μg/kg/min, it has a mixed α + β effect . Dose increase to > 15 μg/kg/min. leads to increased stimulation of α-1 receptors, increasing dose > 22–25 μg/kg/min. is no longer relevant and it is necessary to choose another inotropic agent.
U [[šok (pediatrie)|šokového stavu]] s hypotenzí zahajujeme podávání rychlostí 5 10 μg/kg/min., rychlost infuze zvyšujeme v krocích o 2 5 μg/kg/min. Efekt léčby posuzujeme dle rozdílu centrální a kožní teploty, kapilárního návratu, diurézy. Při potřebě dávek > 25 μg/kg/min vzrůstá SVRI (převaha stimulace α-receptorů) významněji než srdeční výdej. Tento stav označujeme jako dopamin-rezistentní. Dalším krokem je pak použití noradrenalinu u high flow formy (warm shock) nebo adrenalinu u low flow (cold shock).
In [[shock (pediatrics)|shock state]] with hypotension, we start administration at a rate of 5 to 10 μg/kg/min., increasing the infusion rate in steps of 2 to 5 μg/kg/min. We assess the effect of the treatment according to the difference in central and skin temperature, capillary return, diuresis. When doses > 25 μg/kg/min are required, SVRI (predominance of α-receptor stimulation) increases more significantly than cardiac output. We refer to this condition as dopamine-resistant. The next step is the use of noradrenaline for high flow form (warm shock) or adrenaline for low flow (cold shock).
Mezi nevýhody dopaminu patří jeho proarytmogenní efekt, tachykardie a zvýšená konsumpce kyslíku myokardem, hypertenze. S výjimkou bipyridinů, všechna inotropika zvyšují myokardiální spotřebu kyslíku, neboť zvyšují pracovní zatížení myokardu. Účinnost dopaminu je výrazně limitována u pacientů s vyčerpanou zásobou endogenních katecholaminů. Dopamin a další β-agonisté snižují PaO2 interferencí s alveolární plicní vazokonstrikcí (prohloubení V/Q nepoměru).
Disadvantages of dopamine include its proarrhythmogenic effect, tachycardia and increased myocardial oxygen consumption, hypertension. With the exception of bipyridines, all inotropic agents increase myocardial oxygen consumption because they increase myocardial workload. The effectiveness of dopamine is significantly limited in patients with a depleted supply of endogenous catecholamines. Dopamine and other β-agonists decrease PaO2 by interfering with alveolar pulmonary vasoconstriction (exacerbating the V/Q imbalance).
Při extravazaci urychleně infiltrujeme postiženou tkáň fentolaminem (5 10 mg v 10 ml 1/1 FR).
In case of extravasation, we quickly infiltrate the affected tissue with phentolamine (5 to 10 mg in 10 ml 1/1 FR).
Doporučené dávkování je 5 20 μg/kg/min. Dopamin je stabilní při ředění do 5 % glukózy nebo 1/1 FR.
The recommended dosage is 5 to 20 μg/kg/min. Dopamine is stable when diluted to 5% glucose or 1/1 FR.


β-agonisté mají hypokalemický účinek (ovlivněním Na-K-ATPázy) a snižují PaO2 (jimi navozená vazodilatace v plicním řečišti interferuje s mechanismem hypoxické alveolární vazokonstrikce => prohloubení V/Q nepoměru při navýšení P-L zkratu).
β-agonists have a hypokalemic effect (by affecting Na-K-ATPase) and reduce PaO2 (the vasodilatation induced by them in the pulmonary basin interferes with the mechanism of hypoxic alveolar vasoconstriction => deepening of the V/Q disparity when the P-L shunt increases).


;Indikace :
'''Indications:'''
* lék první volby u dětí v septickém šoku, kde selhala volumexpanze
* drug of first choice in children in septic shock where volume expansion has failed
* vhodný u dětí s lehkou myokardiální dysfunkcí a hypotenzí po kardiopulmonální resuscitaci
* suitable for children with mild myocardial dysfunction and hypotension after cardiopulmonary resuscitation


==== Inodilatátory ====
==== Inodilators ====
===== [[Dobutamin]] =====
===== [[Dobutamine]] =====
'''Dobutamin''' je syntetický analog [[dopamin]]u. Nemá žádnou dopaminergní aktivitu. Je potentním inodilatátorem s inotropní β-1 a vazodilatační + chronotropní β-2 aktivitou postihující arteriolární a venosní řečiště. Jeho velkou výhodou je, že nemá vlastní proarytmogenní účinek a prakticky nemá vlastní toxický efekt. V rámci septického šoku podáváme dobutamin, pokud převažuje [[myokard]]iální dysfunkce. Obvykle však hlavním problémem je regulace vaskulárního tonu a preferují se léky zvyšující SVRI. Při myokardiální dysfunkci samotný dobutamin nebo v kombinaci s dopaminem zvyšuje CO a následně i [[krevní tlak]]. Dobutamin je však nejčastěji kombinován s [[noradrenalin]]em u stavů s myokardiální dysfunkcí ve spojení s high flow formou šoku ([[septický šok (pediatrie)|sepse]]) nebo [[ARDS]]. Dobutamin s noradrenalinem jsou v současné době nejčastěji používanou kombinací vazoaktivních látek v resuscitační péči. U dětí s myokardiální dysfunkcí zvyšuje dobutamin systolický objem a CO, bez významného zvýšení srdeční frekvence. Dobutamin vede k poklesu SVR a PVR. Tyto mechanismy vysvětlují navýšení pulse pressure.  
'''Dobutamine''' is a synthetic analogue of [[dopamine]]. It has no dopaminergic activity. It is a potent inodilator with inotropic β-1 and vasodilatory + chronotropic β-2 activity affecting arteriolar and venous channels. Its great advantage is that it does not have its own proarrhythmogenic effect and practically does not have its own toxic effect. In septic shock, we administer dobutamine if [[myocardial]]ial dysfunction prevails. However, usually the main concern is the regulation of vascular tone, and SVRI-increasing drugs are preferred. In myocardial dysfunction, dobutamine alone or in combination with dopamine increases CO and subsequently [[blood pressure]]. However, dobutamine is most often combined with [[noradrenaline]] in conditions with myocardial dysfunction associated with a high flow form of shock ([[septic shock (pediatrics)|sepsis]]) or [[ARDS]]. Dobutamine and noradrenaline are currently the most frequently used combination of vasoactive substances in resuscitation care. In children with myocardial dysfunction, dobutamine increases systolic volume and CO, without a significant increase in heart rate. Dobutamine leads to a decrease in SVR and PVR. These mechanisms explain the increase in pulse pressure.


'''Indikacemi''' pro podávání dobutaminu v pediatrii jsou stavy kongestivního srdečního selhání s nízkým CI a normálním nebo lehce sníženým krevním tlakem (virové [[myokarditidy]], polékové [[kardiomyopatie]], [[infarkt myokardu|infarkty myokardu]] –[[m. Kawasaki]], abnormální odstup levé koronární arterie)
'''Indications''' for the administration of dobutamine in pediatrics are conditions of congestive heart failure with low CI and normal or slightly reduced blood pressure (viral [[myocarditis]], drug-induced [[cardiomyopathies]], [[myocardial infarction|myocardial infarctions] ] –[[m. Kawasaki]], abnormal distance of the left coronary artery)


Při [[srdeční selhání|myokardiálním selhání]] začínáme dobutaminem a zabezpečujeme adekvátní intravaskulární objem dle hodnot [[Centrální žilní tlak|CVP]]. Zde prostá volumexpanze není na místě. Dobutamin je dnes inodilatátorem první volby. Dobutamin lze podávat jako jediný katecholamin i do periferní žíly.
In [[heart failure|myocardial failure]], we start with dobutamine and ensure adequate intravascular volume according to [[Central venous pressure|CVP]]. Simple volume expansion is not appropriate here. Dobutamine is the inodilator of choice today. Dobutamine can also be administered as a single catecholamine into a peripheral vein.


Mezi nežádoucí účinky patří výrazná [[tachykardie]], která může navyšovat spotřebu kyslíku a vyžaduje redukci dávky nebo výměnu za jiné agens. Vzácně může vyvolat síňové nebo ventrikulární [[dysrytmie]], zejm. u pacientů s myokarditidou, elektrolytovou dysbalancí nebo při podávání vysokých dávek. Dobutamin, stejně jako další inotropní látky, musí být podáván opatrně u pacientů s obstrukcí výtoku z levé komory (hypertrofická [[stenóza aorty]]).
Adverse effects include marked [[tachycardia]], which may increase oxygen consumption and require dose reduction or change to another agent. Rarely, it may cause atrial or ventricular [[dysrhythmias]], especially in patients with myocarditis, electrolyte imbalance, or at high doses. Dobutamine, like other inotropic agents, must be administered with caution in patients with left ventricular outflow obstruction (hypertrophic [[aortic stenosis]]).


Doporučené dávkování je 2–20 μg/kg/min. Děti < 1 rok mohou být méně responzibilní na dobutamin nebo delta dávky dopaminu. Pokud dávky > 22 μg/kg/min. nevedou ke zlepšení stavu hemodynamiky, uvažujeme o změně za [[adrenalin]]. Dobutamin je stabilní při ředění do 5% glukózy nebo 1/1 FR.
The recommended dosage is 2-20 μg/kg/min. Children < 1 year may be less responsive to dobutamine or delta doses of dopamine. If doses > 22 μg/kg/min. do not lead to an improvement in the hemodynamic state, we are considering changing to [[adrenaline]]. Dobutamine is stable when diluted to 5% glucose or 1/1 FR.


;Indikace :
'''Indications:'''
* septický šok, pokud převažuje myokardiální dysfunkce
* septic shock if myocardial dysfunction predominates
* v kombinaci s noradrenalinem u stavů s myokardiální dysfunkcí ve spojení s high flow formou šoku (sepse) nebo ARDS
* in combination with noradrenaline in conditions with myocardial dysfunction in connection with high flow form of shock (sepsis) or ARDS
* stavy kongestivního srdečního selhání s nízkým CI a normálním nebo lehce sníženým krevním tlakem (virové myokarditidy, polékové kardiomyopatie, infarkty myokardu – m. Kawasaki, abnormální odstup levé koronární arterie)
* conditions of congestive heart failure with low CI and normal or slightly reduced blood pressure (viral myocarditis, drug-induced cardiomyopathy, myocardial infarctions - Kawasaki muscle, abnormal distance of the left coronary artery)
* při myokardiálním selhání začínáme dobutaminem a zabezpečujeme adekvátní intravaskulární objem dle hodnot CVP
* in case of myocardial failure, we start with dobutamine and ensure adequate intravascular volume according to CVP values


;Dopamin a dobutamin jsou léky zvyšující systolický volum.
;Dopamine and dobutamine are drugs that increase systolic volume.
===== [[Phosphodiesterase III blockers]] =====
'''Phosphodiesterase III blockers''' (PDE III) are divided into bipyridine (amrinone and milrinone) and imidazole (enoximone and pyroximone) preparations. They do not belong to [[catecholamines]], their effect is through selective inhibition of phosphodiesterase III, they do not act on adrenergic receptors or lead to inhibition of Na-K-ATPase. Their effect is similar to dobutamine, i.e. especially the β-2 effect. They increase myocardial contractility, have a vasodilating effect, and improve diastolic function (lusitropic effect). The disadvantage is a whole range of side effects, led by a high proarrhythmogenic effect, the result of which can be systemic hypotension with ventricular tachycardia.


===== [[Blokátory fosfodiesterázy III]] =====
When using phosphodiesterase III blockers, most experts recommend continuous infusion to achieve steady state. Because these drugs have a long half-life, their infusion should be stopped at the first signs of tachyarrhythmia, hypotension, or an excessive decrease in SVR, especially if liver or kidney dysfunction occurs at the same time. The hypotensive effects of phosphodiesterase III blockers can be eliminated by replacing co-administered adrenaline with noradrenaline.
'''Blokátory fosfodiesterázy III''' (PDE III) se dělí na preparáty bipyridinové (amrinon a milrinon) a imidazolové (enoximon a pyroximon). Nepatří mezi [[katecholaminy]], jejich účinek jde cestou selektivní inhibice fosfodiesterázy III, nepůsobí na adrenergní receptory ani nevedou k inhibici Na-K-ATPázy. Svým účinkem se podobají dobutaminu, tj. zejm. β-2 efektem. Zvyšují kontraktilitu myokardu, mají vazodilatační efekt, zlepšují diastolickou funkci (lusitropní efekt). Nevýhodou je celá řada nežádoucích účinků v čele s vysokým proarytmogenním efektem, jehož výsledkem může být systémová hypotenze s ventrikulární tachykardií.
Milrinone, as a newer agent, has fewer side effects than amrinone, and is a more selective PDE III inhibitor.


Při užití blokátorů fosfodiesterázy III většina odborníků doporučuje kontinuální infuzi k dosažení ustáleného stavu. Protože tyto léky mají dlouhý poločas rozpadu, měla by být jejich infuze přerušena již při prvních známkách tachyarytmie, hypotenze nebo při nadměrném poklesu SVR, zejm. pokud se současně vyskytuje jaterní nebo renální dysfunkce. Hypotenzní účinky blokátorů fosfodiesterázy III mohou být eliminovány výměnou současně podávaného adrenalinu za noradrenalin.
Indications for amrinone/milrinone in children are:
Milrinon jako novější zástupce má méně nežádoucích účinků než amrinon, je více selektivní inhibitor PDE III.
* normotensive patients with low CI but high SVRI despite epinephrine or nitrate infusion
* low cardiac output in [[dilated cardiomyopathy|dilated forms of cardiomyopathy]] when other inotropic support fails
* patients with down-regulation of β-1 and β-2 receptors
* with toxic effects of nitrates
* conditions with severe heart insufficiency refractory to other treatment
* postoperative conditions in cardiac surgery


;Indikace amrinonu/milrinonu u dětí jsou :
=== Drug affecting venous return (preload) ===
* normotenzní pacienti s nízkým CI, ale vysokou SVRI navzdory infuzi adrenalinu nebo nitrátů
Administering [[preload]] = diuretics and venodilators in heart failure with reduced contractility will improve cardiac performance by reducing ventricular size and reducing wall tension.
* nízký srdeční výdej u [[dilatační kardiomyopatie|dilatační formy kardiomyopatie]] při selhání jiné inotropní podpory
First of all, we reduce preload by restricting fluids and administering diuretics.
* pacienti s down-regulací β-1 a β-2 receptorů
* při toxických účincích nitrátů
* stavy s těžkou srdeční insuficiencí refrakterní na jinou léčbu
* pooperační stavy v kardiochirurgii


=== Farmaka ovlivňující venosní návrat (preload) ===
==== [[Diuretics]] ====
Podání léků snižujících [[preload]] = diuretik a venodilatátorů při srdečním selhání se sníženou kontraktilitou zlepší výkon srdce zmenšením velikosti komory a snížením napětí její stěny.
'''Diuretics''' relieve symptoms of pulmonary congestion and peripheral [[edema]]. We most often use''furosemide'' in a dose of 0.5–2 mg/kg i.v. as a bolus according to diuresis, or continuously up to a maximum total dose of 10 mg/kg/day. By directly acting on the loop of Henle, it causes the excretion of ions [[Na]], [[K]], [[Chlorides|Cl]] and body water. It has a quick and short-term effect.
Preload v prvé řadě redukujeme restrikcí tekutin a podáváním diuretik.  


==== [[Diuretika]] ====
During long-term diuretic treatment, when there is a risk of developing secondary hyperaldosteronism and hypokalemia, spironolactone is indicated in a dose of 1-3 mg/kg/day divided into 3 doses. Spironolactone is a competitive aldosterone inhibitor acting on the distal renal tubule. It has a very weak diuretic effect by itself, but potentiates the effect of other diuretics. It partially antagonizes the loss of K ions. In combination with [[ACE inhibitors]] or excessive potassium substitution, it causes hyperkalemia.
'''Diuretika''' zmírňují příznaky plicní kongesce a periferních [[edém]]ů. Nejčastěji používáme ''furosemid'' v dávce 0,5–2 mg/kg i.v. jako bolus dle diurézy, nebo kontinuálně do maximální celkové dávky 10 mg/kg/den. Přímým působením na Henleovu kličku působí exkreci iontů [[Na]], [[K]], [[Chloridy|Cl]] a tělesné vody. Má rychlý a krátkodobý účinek.
Při dlouhodobé diuretické léčbě, kdy hrozí rozvoj sekundárního hyperaldosteronismu a hypokalémie, je indikován ''spironolakton'' v dávce 1 3 mg/kg/den rozděleně do 3 dávek. Spironolakton je kompetitivní inhibitor aldosteronu v působení na distální ledvinný tubulus. Sám má velmi slabý diuretický účinek, ale potencuje účinek ostatních diuretik. Částečně antagonizuje ztráty iontů K. V kombinaci s [[inhibitory ACE]] nebo nadměrnou substitucí kalia působí hyperkalémii.


{{Dobrý příklad|Nepříznivé účinky má podání diuretik a venodilatátorů u pacientů se sníženou kontraktilitou myokardu a s deficitem cirkulujícího objemu nebo s nedostatečným plněním komory!}}
{{Good example|The administration of diuretics and venodilators has adverse effects in patients with reduced myocardial contractility and circulating volume deficit or insufficient ventricular filling!}}


=== Farmaka ovlivňující preload i afterload ===
=== A farm affecting preload and afterload ===
Společným jmenovatelem pro tuto skupinu léků je ''snížení periferní cévní rezistence''. Mají kombinovaný účinek na žíly i tepny. Je třeba zdůraznit, že vysoká periferní cévní rezistence je častým příznakem během šokových stavů u dětí. Mluvíme o tom, že ''pro děti je typický hypodynamický šok''. Ovlivnění rezistence a kapacity systémového cévního řečiště má vliv na srdeční výkonnost. Zvýšení periferní cévní rezistence při nezměněném [[preload]]u a kontraktilitě snižuje [[srdeční výdej]]. Užitím vazodilatátorů a ostatních léků s relaxačním vlivem na hladkou svalovinu periferních cév lze modifikovat srdeční výkonnost při [[srdeční selhání|srdečním selhání]]. Periferní cévní vazodilatace snižuje [[afterload]] myokardu. Zvýšením kapacity systémového řečiště se sníží také preload myokardu a klesá plnicí objem srdce. Snížení periferní rezistence však s sebou nese riziko systémové vazodilatace, která při subklinické nebo nepoznané hypovolemii může vést k život ohrožující [[hypotenze|hypotenzi]]. Zároveň s redukcí SVR jsou narušeny regulační mechanismy redistribuce tekutin. Při použití vazodilatační léčby je vhodné monitorovat plnicí a systémové tlaky. Mezi léky snižující vysokou SVR patří nitroprussid sodný, nitroglycerin a ACE inhibitory, v menší míře i dehydrobenzperidol či chlorpromazin.
The common denominator for this group of drugs is ''reduction of peripheral vascular resistance''. They have a combined effect on veins and arteries. It should be emphasized that high peripheral vascular resistance is a frequent symptom during shock states in children. We are talking about the fact that ''hypodynamic shock is typical for children''. Affecting the resistance and capacity of the systemic vascular bed has an effect on cardiac performance. An increase in peripheral vascular resistance with unchanged [[preload]] and contractility decreases [[cardiac output]]. The use of vasodilators and other drugs with a relaxing effect on the smooth muscle of peripheral vessels can modify cardiac performance in [[heart failure|heart failure]]. Peripheral vascular vasodilatation reduces myocardial [[afterload]]. By increasing the capacity of the systemic flow, the preload of the myocardium also decreases and the filling volume of the heart decreases. However, the reduction of peripheral resistance carries the risk of systemic vasodilation, which in the case of subclinical or unrecognized hypovolemia can lead to life-threatening [[hypotension|hypotension]]. Simultaneously with the reduction of SVR, the regulatory mechanisms of fluid redistribution are disrupted. When using vasodilator therapy, it is advisable to monitor filling and systemic pressures. Medicines that reduce high SVR include sodium nitroprusside, nitroglycerin and ACE inhibitors, and to a lesser extent dehydrobenzperidol or chlorpromazine.


==== Nitroprusid sodný ====
==== Sodium nitroprusside ====
'''Nitroprusid''' je rychle působící periferní vazodilatans. Má přímý vazodilatační účinek na arterioly a žíly. Snižuje především afterload a zvyšuje tak srdeční výdej. Výsledkem je snížené plnění levé komory, ústup [[plicní edém|plicního městnání]], snížení objemu a tlaku v levé komoře, lepší vyprázdnění levé komory v systole, snížená konsumpce kyslíku myokardem. Jeho účinek je vázán na jeho bezprostřední podávání, tj. po zastavení infúze se účinek okamžitě ztrácí. Při jeho použití je naprosto nezbytný [[invazivní monitoring tlaku krve]]. Delší podávání může vést k vzestupu sérové hladiny kyanidů; nutná je jejich kontrola. Při intoxikaci se objevují [[poruchy vědomí]], [[MAC]]. Doporučovanou dávkou je 0,5–10 μg/kg/min, dávku titrujeme dle účinku. Zpravidla začínáme nízkou dávkou a dle účinku zvyšujeme dávky cca o 0,5 μg/kg/min po 10 minutách. Nitroprusid můžeme kombinovat spolu s [[dopamin]]em nebo [[dobutamin]]em, protože mají synergický účinek na zvýšení minutového srdečního objemu. Vzhledem k jeho razantnímu účinku, který může být spojen i se závažnými komplikacemi, užíváme nitroprusid jen v nejtěžších případech.
'''Nitroprusside''' is a fast-acting peripheral vasodilator. It has a direct vasodilating effect on arterioles and veins. It primarily reduces afterload and thus increases cardiac output. The result is reduced filling of the left ventricle, reduction of [[pulmonary edema|pulmonary congestion]], reduction of volume and pressure in the left ventricle, better emptying of the left ventricle in systole, reduced oxygen consumption by the myocardium. Its effect is tied to its immediate administration, i.e. after stopping the infusion, the effect is immediately lost. When using it, [[invasive blood pressure monitoring]] is absolutely necessary. Prolonged administration may lead to a rise in serum cyanide levels; their control is necessary. During intoxication, [[disorders of consciousness]], [[MAC]] appear. The recommended dose is 0.5–10 μg/kg/min, the dose is titrated according to the effect. As a rule, we start with a low dose and, depending on the effect, increase the dose by approx. 0.5 μg/kg/min after 10 minutes. Nitroprusside can be combined with [[dopamine]] or [[dobutamine]] because they have a synergistic effect on increasing cardiac output. Due to its drastic effect, which can also be associated with serious complications, we only use nitroprusside in the most severe cases.


==== Nitroglycerin ====
==== Nitroglycerin ====
Venodilatátory jsou indikovány při zvýšeném enddiastolickém tlaku. Hlavním zástupcem je nitroglycerin. Má přímý venodilatační účinek, dilatuje hladké svalstvo cévní stěny, predominantně systémové žíly a koronární arterie. Snižuje žilní návrat a snižuje kongesci v systémovém i plicním řečišti. V nízkých dávkách vede k venodilataci a snížení [[preload]]u. Vysoké dávky působí výraznější vazodilataci v plicním řečišti (cave: kongesce!), dilataci arteriol a snížení [[afterload]]u. Farmakologické účinky jsou závislé především na stavu intravaskulárního objemu, méně na dávce (hypovolémie zvyšuje riziko [[hypotenze]]). Obvyklé dávky jsou 0,25–5 μg/kg/min kontinuálně i.v.
Venodilators are indicated for elevated end-diastolic pressure. The main representative is nitroglycerin. It has a direct venodilating effect, it dilates the smooth muscle of the vascular wall, predominantly systemic veins and coronary arteries. It reduces venous return and reduces congestion in the systemic and pulmonary basins. In low doses, it leads to venodilatation and reduction of [[preload]]. High doses cause more pronounced vasodilation in the pulmonary basin (cave: congestion!), dilation of arterioles and reduction of [[afterload]]. Pharmacological effects depend mainly on the state of the intravascular volume, less on the dose (hypovolemia increases the risk of [[hypotension]]). Usual doses are 0.25–5 μg/kg/min continuously i.v.


==== [[ACE inhibitory]] ====
==== [[ACE inhibitors]] ====
'''ACE inhibitory''' vedou k vazodilataci a snížení sekrece [[aldosteron]]u. Výsledkem je zvýšená exkrece [[Na|natria]], která vede ke snížení systémové periferní rezistence, k poklesu EDP a vzestupu srdečního minutového objemu. Dalším pozitivním účinkem je schopnost remodelovat hypertrofický myokard komor. Zástupcem je např. enalapril, dávky p.o. 0,15–0,5 mg/kg/d v 1–2 dávkách, pro i.v. léčbu 5–10 μg/kg/dávku 1–3× během 24 hod.
'''ACE inhibitors''' lead to vasodilation and reduction of [[aldosterone]] secretion. The result is increased excretion of [[Na|sodium]], which leads to a decrease in systemic peripheral resistance, a decrease in EDP and an increase in cardiac output. Another positive effect is the ability to remodel the hypertrophic myocardium of the ventricles. A representative is e.g. enalapril, doses p.o. 0.15–0.5 mg/kg/d in 1–2 doses, for i.v. treatment 5–10 μg/kg/dose 1–3 times within 24 hours


=== [[Steroidy]] ===
=== [[Steroids]] ===
Podávání hydrocortisonu by mělo být vyhrazeno pro stavy nereagující na adekvátní léčbu volumexpanzí a inotropiky či situace s předpokládanou nebo prokázanou [[adrenokortikální insuficience|nadledvinovou insuficiencí]]. Rizikovou skupinu představují děti se [[septický šok (pediatrie)|septickým šokem]] a purpurou, s předchozí chronickou terapií kortikoidy a s adrenálními nebo hypofyzárními abnormalitami. Přesná definice nadledvinové insuficience není formulována, při septickém šoku rezistentním na katecholaminy se za její známky považuje nález hladiny kortizolu < 500 nmol/l. Optimální dávkování steroidů u dětí není formulováno, nejčastěji doporučované dávky kolísají od 1 do 2 mg/kg hydrocortisonu jako stresové dávky, alternativně 200 mg/d rozděleně do 3–4 dávek bez ohledu na tělesnou hmotnost. Jedno z recentních doporučení pro podávání hydrocortisonu: 0,18 mg/kg/hod. kontinuálně. Recentní metaanalýzy potvrdily, že steroidy typu methylprednisolonu ve vysoké dávce, tj. 30 mg/kg jsou u šokových stavů neefektivní, nebo dokonce škodlivé.
Administration of hydrocortisone should be reserved for conditions unresponsive to adequate treatment with volume expansion and inotropes or situations with suspected or proven [[adrenocortical insufficiency|adrenal insufficiency]]. Children with [[septic shock (pediatrics)|septic shock]] and purpura, with previous chronic corticoid therapy and with adrenal or pituitary abnormalities are a risk group. The exact definition of adrenal insufficiency is not formulated, in case of septic shock resistant to catecholamines, the finding of a cortisol level < 500 nmol/l is considered to be its sign. The optimal dosage of steroids in children is not formulated, the most often recommended doses vary from 1 to 2 mg/kg of hydrocortisone as stress doses, alternatively 200 mg/d divided into 3-4 doses regardless of body weight. One of the recent recommendations for the administration of hydrocortisone: 0.18 mg/kg/hour. continuously. Recent meta-analyses have confirmed that methylprednisolone-type steroids in high doses, i.e. 30 mg/kg, are ineffective or even harmful in shock states.


=== Metabolická podpora ===
=== Metabolic support ===
Při [[kardiogenní šok (pediatrie)|kardiogenním šoku]] podáváme tekutiny v dávce 80–100 % normální denní potřeby, přesněji podle hodnot [[Centrální žilní tlak|CVP]] a PAWP. U ostatních typů šoku navyšujeme v úvodu denní potřebu tekutin na 150–200 % normálu a během prvního dne terapie není výjimečná výrazně pozitivní vodní bilance.
In [[cardiogenic shock (pediatrics)|cardiogenic shock]], we administer fluids at a dose of 80-100% of the normal daily requirement, more precisely according to [[Central venous pressure|CVP]] and PAWP values. For other types of shock, we initially increase the daily fluid requirement to 150-200% of normal, and a significantly positive water balance is not unusual during the first day of therapy.
Terapii [[bikarbonát]]em volíme v situaci těžké [[MAC]] ([[pH]] < 7,1, HCO<sub>3</sub> < 8) i přes adekvátní volumexpanzi.
[[bicarbonate]] therapy is chosen in a situation of severe [[MAC]] ([[pH]] < 7.1, HCO<sub>3</sub> < 8) despite adequate volume expansion.


=== Ostatní terapie ===
=== Other therapies ===
Nález [[hypokalcémie]] může vést k obrazu dysfunkce levé komory, která je zcela reverzibilní po úpravě kalcémie. Zejména u nejmenších dětí, kde jsou sníženy zásoby [[glykogen]]u můžeme nacházet [[hypoglykémie|hypoglykémii]]. Obecně poslední možností, tzv. rescue therapy je ECMO ([[extrakorporální membránová oxygenace]]).
The finding of [[hypocalcemia]] can lead to a picture of left ventricular dysfunction, which is completely reversible after calcium correction. Especially in the smallest children, where [[glycogen]] reserves are reduced, we can find [[hypoglycemia|hypoglycemia]]. In general, the last option, the so-called rescue therapy, is ECMO ([[extracorporeal membrane oxygenation]]).


== Komplikace šokových stavů ==
== Complications of shock states ==
V rámci šoku můžeme nacházet různé multisystémové dysfunkce. Jejich diagnostika je stejně důležitá jako jejich léčba.  
As part of the shock, we can find various multisystem dysfunctions. Their diagnosis is as important as their treatment.
Možnými komplikacemi jakéhokoli šokového stavu jsou :
Possible complications of any shock state are:
* [[akutní tubulární nekróza]]
* [[acute tubular necrosis]]
* [[ischémie]] střeva: [[Nekrotizující enterokolitida|NEC]], perforace
* [[ischemia]] of intestine: [[Necrotizing enterocolitis|NEC]], perforation
* ischémie myokardu
* myocardial ischemia
* poškození CNS: [[intrakraniální hypertenze]], [[křeče]]
* CNS damage: [[intracranial hypertension]], [[convulsions]]
* [[pankreatitida]]
* [[pancreatitis]]
* [[DIC]]
* [[DIC]]
* [[rabdomyolýza]]
* [[rhabdomyolysis]]
* metabolické poruchy
* metabolic disorders
* [[Syndrom multiorgánové dysfunkce|MODS]]
* [[Multiorgan Dysfunction Syndrome|MODS]]




<noinclude>
<noinclude>
== Odkazy ==
== Links ==
=== Zdroj ===
=== Source ===
* HAVRÁNEK, Jiří: ''Šok''. (upraveno)
* HAVRÁNEK, Jiří: ''Šok''. (edited)
=== Související články ===
=== Related Articles ===
* [[Šok]]
* [[Shock]]


{{Rozdělit}}
</noinclude>
</noinclude>


[[Kategorie:Pediatrie]]
[[Category:Paediatrics]]
[[Kategorie:Vnitřní lékařství]]
[[Category:Internal Medicine]]
[[Kategorie:Kardiologie]]
[[Category:Cardiology]]
[[Kategorie:Fyziologie]]
[[Category:Physiology]]
[[Kategorie:Patofyziologie]]
[[Category:Pathophysiology]]

Latest revision as of 13:12, 10 November 2023

Shock is defined as a disproportion between the need and supply of oxygen to the tissues. It is a micro and/or macrocirculation disorder that leads to failure of tissue perfusion, oxygen consumption and energy metabolism of cells. Insufficient oxygen supply leads to a shift of aerobic metabolism to a less efficient anaerobic metabolism, lactic acidosis occurs. The Brain does not have the capacity for anaerobic metabolism, and that is why it is seriously affected when there is a lack of oxygen.

The most common form of shock in children is hypovolemic and septic shock.

As stated above, the measure of shock is perfusion impairment. The following table gives the answer to the question of which clinical condition can already be considered as shock.

Symptomatology of reduced perfusion (Heart Diseases in Infants, Children and Adolescents 1994)
Reduced perfusion Significantly reduced perfusion (preshock state) Severely reduced perfusion (shock state)
CNS 0 restlessness, anxiety or apathy agitation/confusion, severe impaired consciousness to coma
Respiration 0 mild tachypnea marked tachypnea
Metabolism 0 compensated MAC decompensated MAC
GIT 0 reduced motility ileus
Kidneys increased osmolality of urine oliguria anuria
Skin slowed capillary return cool acres cool, marbled to cyanotic acres
Cardiovascular system tachycardia marked tachycardia, reduced peripheral pulsation pronounced tachycardia, hypotension, palpable only pulsations over the large arteries

Oxygen delivery (oxygen delivery, DO2)

Oxygen delivery (DO2) is directly proportional to cardiac output and the oxygen content in arterial blood (arterial oxygen content, CaO2). For pediatrics, we always choose indexed values, i.e. values related to the body surface.

  • DO2 (index) = CI x CaO2 x 10
  • CI = HR x SV
  • CaO2 = (Hb x 1.34 x SaO2) + (0.003 x PaO2)
  • CvO2 = (Hb x 1.34 x SvO2) + (0.003 x PvO2)
  • a - v DO2 = CaO2 - CvO2

  • DO2 = oxygen delivery, represents oxygen delivered by tissue per minute, reference values DO2 = 550-650 ml/min/m2
  • SV = stroke volume = pulse volume
  • HR = heart rate = heart rate
  • CI = cardiac index = cardiac index (this is cardiac output related to a unit of body surface area)
  • CaO2 = oxygen content in arterial blood, reference values CaO2 = 17 – 20 Jr.
  • CvO2 = oxygen content in mixed venous blood, reference values CvO2 = 12– 15 ml
  • SaO2 = saturation of arterial blood O2, it is reported as SaO2 /100
  • SvO2 = saturation of mixed venous blood, it is given as SvO2/100
  • PaO2 = partial pressure of oxygen in arterial blood, it is given in torrs
  • PvO2 = partial pressure of oxygen in mixed venous blood, it is given in torr
  • a-v DO2 = arteriovenous oxygen content difference (oxygen content difference), reference values a-v DO2 = 3 – 5 ml/dl
  • Hb = hemoglobin, it is given in the amount of g/dl

Oxygen consumption (oxygen consumption, oxygen uptake, VO2)

The rate of O2 consumption is VO2 (oxygen consumption, oxygen uptake), reference values VO2 (index) = 120 – 200 ml/min /m2

VO2 (index) = CI x (CaO2 - CvO2) × 10

The basic task of the cardiopulmonary unit is to ensure the balance between DO2 and VO2. Equilibrium is determined by:

  • oxygen content in mixed venous blood CvO2
  • O2 extraction (oxygen extraction, O2ER), i.e. the ratio between the amount of consumed and delivered oxygen VO2 / DO 2, which is expressed as a percentage. Normal extraction values are around 25%, but with significantly increased tissue demand or reduced perfusion, O2 extraction can rise to 50%. As part of the shock states, we try to keep the oxygen extraction below 30%.
O2ER = VO2 / DO2

Both CvO2 and O2ER depend on the mixed venous blood saturation values of SvO2 and cardiac CO output. CO/CI depends on heart rate value and stroke volume (the latter is determined by preload, afterload and contractility). Increasing heart rate, improving myocardial contractility and relaxation in diastole, optimizing preload and afterload increase CO/CI. Oxygen carrying capacity can be improved by optimizing hematocrit. For critically ill children, but in a stable condition, we consider a hemoglobin value of 70 g/l as the borderline for transfusion. By improving all these parameters, DO2 can be increased. In some specific situations (fever, high flow stage sepsis, trauma, thyrotoxicosis) metabolic needs can exceed even normal DO2.

Basic physiological calculations of ventilation
unit standard
CaO2 ml 17–20
CvO2 ml 12-15
α-vDO2 ml/dL 3–5
DO2 (index) ml/min/m2 550–650
VO2 (index) ml/min/m2 120–200
O2ER % 20–35

With insufficient supply of O2, some cells can cover their energy needs by anaerobic glycolysis, i.e. by converting glucose into lactic acid. However, the energy efficiency is negligible (2 ATP per glucose compared to 36 ATP in oxidative combustion). The dissociation of lactic acid into H+ and lactate then leads to the development of MAC. The lack of energy first causes the limitation of cell function and finally their irreversible damage. Likewise, shock is a condition caused by a severe and extensive reduction in effective tissue perfusion leading first to reversible, then irreversible cell damage. Effective tissue perfusion can be reduced globally, i.e. by reducing the minute cardiac output or increasing inefficient regional perfusion based on blood flow distribution disorders or substrate utilization disorders at the cellular level.

Factors that determine the effectiveness of tissue perfusion can understandably cause shock even if they are severely affected in isolation. In most cases, especially in later forms of shock, these are manifestations of multifactorial damage. Determinants of effective tissue perfusion can be classified into 4 main categories:

  1. quantities affecting the performance of the heart muscle;
  2. effective blood volume;
  3. factors affecting vascular resistance and permeability (and thus the distribution of circulating blood volume);
  4. factors affecting the availability of oxygen at the cellular level.

From a practical point of view, it should be noted that shock can be present with normal, decreased or increased cardiac output, with normal, decreased or increased BP.

In children, at first it is often hypodynamic shock = low flow with reduced CO/CI and, conversely, high peripheral systemic resistance (the exception is the initial phase of septic shock, hepatic failure, thyrotoxic crisis, etc.).

Physiology and Pathophysiology Notes

Vascular tone control

Vasomotor tone of vessels is affected by several mechanisms: nervous and humoral factors, composition of blood gases, local metabolic regulation, function of the endothelium and smooth muscles of the vascular media.

A mechanism that regulates vascular resistance in one region may be completely without effect in another region. E.g. in the context of hypovolemic shock , the perfusion of the heart and brain is preserved , and on the contrary, it is reduced in the muscles, skin and splanchnic.

Neuromodulation of vascular tone

Receptors to which noradrenaline , acetylcholine or neuropeptides bind are represented throughout the circulation. However, the distribution of receptors is organ-specific, allowing rapid and coordinated redistribution of blood flow in response to hypoxia , postural changes, and hemorrhage . In all organs, the nerve endings of efferent nerves also contain nonadrenergic and noncholinergic peptides, e.g. neuropeptide Y , VIP (vasoactive intestinal peptide), substance P, calcitonin gene-related peptide (CGRP). Most of these peptides, with the exception of neuropeptide Y, lead to vasodilation and help regulate regional perfusion

Humoral regulation of vascular tone

Humoral factors that regulate vascular tone include the renin-angiotensin-aldosterone system (RAAS), ADH , bradykinin , histamine , serotonin , thyroxine , natriuretic peptides, and a number of others. These factors affect vascular tone in a direct and indirect way. These factors tend to decrease in concentration during hypertension , congestive heart failure or shock , and their antagonists are often used in the therapy of these conditions. Certain factors such as histamine, serotonin, thyroxine probably affect vascular resistance only in pathological conditions and do not apply in physiological conditions.

Angiotensin plays a special role in blood pressure homeostasis . Hypovolemia leads to increased production of renin in the kidney, which converts angiotensinogen to angiotensin I. Angiotensin I is converted to active angiotensin II by angiotensin-converting enzyme (ACE) in the endothelium, especially in the pulmonary bed. However, angiotensin II can be produced directly from renin locally in the heart and vessel wall. Angiotensin II causes generalized vasoconstriction in the systemic and pulmonary circulation, but locally stimulates the release of vasodilating prostaglandins in the kidneys and lungs .

Aldosterone was primarily known for its effect on sodium and potassium balance . Its concentration increases with the release of renin. In patients with congestive heart failure, we find its high concentrations both due to dilutional hyponatremia and reduced degradation in the liver. High concentrations, which are a sign of the body's initially compensatory reaction overshooting, are harmful to the cardiovascular system. Inhibition of aldosterone by spironolactone appears to be of great benefit in the therapy of heart failure.

ADH (antidiuretic hormone, vasopressin) has an antidiuretic effect and at the same time causes vasoconstriction, low concentrations of ADH lead to vasodilation in the coronary, cerebral and pulmonary basins. The concentration of ADH decreases in septic shock, on the contrary, it increases in hypovolemia, congestive heart failure and liver cirrhosis . Selective ADH antagonists allow excretion of free water without ion excretion and are useful in the treatment of hypervolemia in patients with congestive heart failure, cirrhosis, or SIADH . Bradykinin is a potent vasodilator in the pulmonary and systemic circulation. It is released locally from kallikrein by the action of proteolytic enzymes as a result of tissue damage.

Histamine is also released from mast cells in response to tissue damage. It is a potent vasodilator in the systemic circulation, but leads to vasoconstriction in the pulmonary circulation. It also increases vascular permeability.

Natriuretic peptides are released from the heart as it distends in congestive failure. They cause vasodilation and increase natriuresis. ANP (atrial natriuretic peptide) is released especially in the atria, BNP (brain natriuretic peptide) from the ventricles and C-natriopeptide from the cardiac endothelium. Recombinant BNP (nesiritide) is more effective than dobutamine in the treatment of acute severe congestive heart failure.

Serotonin causes vasodilation or vasoconstriction depending on the type of serotonin receptor affected.

Effect of blood gases on vascular tone

The values ​​of paO 2 and paCO 2 are dependent on the quality of tissue perfusion. Hypoxia and hypercapnia that accompany hypoperfusion are associated with a vasodilator effect.

Local metabolic regulation of vascular tone

Local metabolic regulation of vasomotor tone represents an ideal homeostatic mechanism. With its help, the metabolic needs of tissues directly affect local perfusion. E.g. adenosine, which accumulates locally during high tissue metabolism and marginal tissue oxygenation, leads to vasodilation in the coronary basin, striated muscle, splanchnic, and cerebral circulation.

Regulation of vascular tone through the endothelium

The vascular endothelium plays a prominent role in the regulation of vascular tone. In addition to influencing vasoactive eicosanoids and their role in angiotensin metabolism, the endothelium produces a number of vasoactive substances. Nitric oxide (NO; a potent vasodilator) and endothelins are among the most important . Endothelins (ET-1, ET-2, ET-3) represent a family of vasoactive substances. ET-1 is a potent vasoconstrictor, otherwise the effect of endothelins depends on acting on two types of receptors: ET-A receptors located in vascular smooth muscle mediate vasoconstriction, ET-B on endothelial cells mediate vasodilation. Endothelin antagonists, such as bosentan, are beginning to be used therapeutically.

Regulation of vascular tone through smooth muscle of the vascular media

Changes in vascular smooth muscle tension are a response to distension or an increase in transmural pressure. An increase in vascular flow leads to local vasoconstriction. The opposite reaction is caused by a decrease in vascular flow.

Autoregulation

In all organs, if the perfusion pressure is suddenly increased or decreased while oxygen consumption is maintained constant, the flow rate will increase or decrease temporarily, but then return to the previous value. This phenomenon is called autoregulation .

The myogenic tonic response partially explains this phenomenon, but it is not the only mechanism. Some scientists believe that tissues have oxygen sensors that respond to transient increases or decreases in oxygen supply . Other researchers argue that the process of autoregulation is mediated by increased or decreased release of nitric oxide, which is transported to the tissues via hemoglobin as S-nitrosohemoglobin or by the release of ATP from erythrocytes .

Some autoregulatory mechanisms are specific to individual microcirculations (eg, renal). Self-regulatory mechanisms differ in individual organs.

Pulmonary circulation

In the fetus , the pulmonary circulation has the character of a systemic circulation, the pulmonary arteries have a strongly developed medial smooth muscle. This is the reason for the high pulmonary resistance in the fetus even early postnatally. After birth, within a few weeks, the musculature of the mediastinum involutes and progressively decreases the resistance of the pulmonary canal. During the first 24 hours after birth, the pulmonary arterial pressure drops to a value of approx. 50% of the mean arterial pressure , and the pulmonary circulation remains at low pressure with low vascular resistance. Due to the intimate relationship between small pulmonary vessels and alveoli, intra-alveolar pressure affects pulmonary flow, especially in patients with artificial pulmonary ventilation.

The most important factors that influence pulmonary vascular resistance in the postnatal period are the oxygenation rate and the pH value . When the oxygen tension in the alveoli decreases, hypoxic pulmonary vasoconstriction develops in a given lung segment. The goal is to redistribute blood flow to well-ventilated areas of the lung and thus maintain a favorable ventilation/perfusion (V/Q) ratio. This phenomenon is highly specific to the pulmonary circulation, as the blood vessels of other organs (including the CNS) respond to hypoxia by vasodilation. Acidosis potentiates hypoxic pulmonary vasoconstriction, alkalosis reduces it. The actual mechanism of the pH-mediated response of the pulmonary vascular bed is not fully understood, but it appears independent of pCO 2. The mechanism of alveolar hyperoxia and alkalosis is often used to induce pulmonary vasodilation in patients with pulmonary hypertension. Hypocapnia and RAL in turn lead to vasoconstriction in the systemic circulation, which may have adverse consequences in CNS and cardiac perfusion.

Selective pulmonary vasodilators are oxygen and inhaled nitric oxide (iNO).

Coronary circulation

The right and left coronary arteries arise from the sinus of Valsalva and run along the surface of the heart . Perfusion of the heart takes place during diastole. In tachycardia , diastole shortens, myocardial perfusion decreases and ischemia may occur . Under normal circumstances, right ventricular perfusion takes place even during systole due to the low pressures. The coronary circulation also exhibits autoregulation. An increase in pressure causes vasoconstriction, a decrease in pressure leads to vasodilation. When the pressure drops below 40 torr, the autoregulation mechanism is no longer effective and ischemia develops.

Renal circulation

Approximately 20% of cardiac output flows through the kidneys , although the weight of the kidneys represents approximately 0.5% of the total body weight. The reason is to promote sufficient glomerular filtration to maintain water and solute homeostasis. At the end of the arterial river we find afferent arterioles, which open into the capillary network within the glomerulus. Glomerular capillaries form in the outflow part into an efferent arteriole, which subsequently creates a secondary capillary system (peritubular capillaries). The increased hydrostatic pressure inside the glomerular capillaries promotes filtration, while the much lower pressure inside the peritubular capillaries aids reabsorption. Changes in the resistance of afferent and efferent arterioles allow for dynamic changes in renal function in response to fluid and solute needs.

Renal flow is determined by the difference between renal arterial pressure (corresponding to systemic arterial pressure) and renal venous pressure. Renal vasomotility is influenced by both external factors ( sympathoadrenal system , natriuretic peptides , RAAS ) and internal factors that are responsible for autoregulation of renal flow in response to changes in renal perfusion pressure (RPP). Glomerular filtration is given by glomerular filtration pressure (glomerular filtration pressure, GFP). GFP depends on RPP and the balance between arterial tone of afferent and efferent arterioles. Specifically, vasoconstriction of the vas efferens increases glomerular filtration, vasoconstriction of the vas afferens decreases glomerular filtration.

Endothelial function

The endothelium performs a number of functions:

  • Endothelial cells play an important role in the body's defenses - they enable the adhesion and subsequent extravasation of leukocytes through molecules - selectins, adherins, integrins.
  • The endothelium is intimately linked to the function of the coagulation system . It has the ability to produce procoagulant factors (platelet activating factor = PAF, von Willebrand factor , fibronectin, ff. V and X) and anticoagulant factors (heparan, dermatan sulfate, thrombomodulin) and by producing NO and PGI2 it inhibits platelet aggregation and degranulation .
  • The endothelium regulates capillary permeability by producing endothelin 1 (ET-1), which increases permeability, and by producing PGE1, which decreases permeability.

Relationship between flow, pressure and vascular resistance

From the point of view of the diagnosis of the shock state syndrome, the parameter of perfusion efficiency with subsequent manifestations of organ dysfunction is absolutely essential.

Organ perfusion (flow) is determined by the pressure of flowing blood and vascular resistance. Under normal circumstances, a sufficient pressure gradient is present and vasomotor control regulates individual organ perfusion according to metabolic need. Under resting conditions, only part of the vascular system is open. In most cases, the onset of shock syndrome is linked to a drop in pressure and subsequent failure of organ perfusion. However, the level of blood pressure is not the only determinant of perfusion. With high blood pressure, but at the same time high vascular resistance, tissue perfusion is also not sufficient.

Thus, the severity of the shock state is primarily determined by the depth of the tissue perfusion disorder. Good tissue perfusion ensures an adequate supply of nutrients and oxygen at the cellular level. However, we must always relate tissue perfusion to the current needs of the organism. In conditions with hyperkinetic circulation ( thyrotoxicosis , high flow phase of sepsis , liver failure ), even "normal" perfusion may be insufficient, as the tissues show a higher need for oxygen and energy substrates than the organism is able to provide at the given moment. Simply put, demand for O2 exceeds supply. The parameters of adequate oxygen supply are:

The decisive parameter determining the regional perfusion Q is the blood flow generating the dynamic blood pressure. According to Poiseuille's law :

Q = (P in - P out ) / R

where Q is tissue flow, P in is input pressure, P out is output pressure, R is resistance. In the case of a simple tube, this is determined by the diameter of the tube, its length, it is inversely proportional to the fourth power of the radius and directly proportional to the value of the viscosity of the flowing fluid.


The severity of the shock state is determined primarily by the depth of the tissue perfusion disorder.


Thus, regional perfusion is determined by blood pressure and regional resistance. The resistance of various areas of the systemic circulation and the cardiac output determine the value of the systemic arterial pressure. Local factors controlling regional perfusion may have different effects than control mechanisms regulating systemic arterial pressure. For example, hypoxia leads to vasoconstriction by activating central baroreceptors, but vasodilation occurs in the periphery. If we take into account the whole body perfusion Q co and neglect P out (the venous pressure is small compared to the value of the arterial pressure), we get the equation:

Pa = Q co x R vol

where P a is arterial pressure, Q is cardiac output, Rsv is systemic vascular resistance. For a more accurate determination of tissue perfusion, however, we take venous pressure into account (P out = CVP ) in a situation where we want to define the perfusion pressure parameter = perfusion pressure PerP. This corresponds to the difference between mean arterial pressure MAP and central venous pressure CVP. So:

erP = MAP - CVP
Limit values ​​of perfusion pressure in cm H 2 O (mm Hg - rounded values)
Children's age Perfusion pressure in cm H 2 O (mm Hg)
newborns 55 (40)
infants 60 (45)
toddlers 65 (50)
preschoolers 65 (50)
school children 65 (50)

However, perfusion pressure is not the only important parameter, it is necessary to simultaneously maintain S vc O 2 > 70% with the help of transfusion or inotropic support, lactate level < 2 mmol/l, good peripheral perfusion, diuresis > 1 ml/kg/h.

In conditions with intra-abdominal hypertension ( ascites , ileus ) the perfusion pressure is equal to the difference MAP - IAP (intra-abdominal pressure). The relationship between flow, pressure and resistance can also be applied to individual organs. In the kidneys, for example, renal flow Q = (mean renal arterial pressure - mean renal venous pressure) / renal vascular resistance.

Some organs, as already mentioned above, have the ability of vasomotor autoregulation , which maintains blood flow even at low blood pressure. This works up to a certain critical point where the perfusion pressure is reduced below a value where sufficient flow can still be maintained in the organ. The purpose of shock treatment is to maintain the perfusion pressure above a given critical point (but be careful - the critical point is not a fixed value, it is strictly individual).

The kidneys are a textbook example: the kidneys need the second highest blood flow. At the same time, accurate determination of diuresis and creatinine clearance is very easy and enables the quality of renal perfusion to be assessed. And it is the quality of renal perfusion that provides a picture of perfusion in other visceral organs as well. The kidneys thus represent a kind of "window" into organ perfusion. Therefore, an accurate assessment of diuresis in every critically ill patient is absolutely essential!

If hypotension occurs, it is the result of low cardiac output or low vascular resistance. From this point of view, it is possible to divide shock states into only two basic categories - shock with low cardiac output and shock with low systemic vascular resistance .

Age-Specific Vital Signs and Laboratory Values ​​(Pediatric Critical Care 2005)
Age Heart rate (beats per minute) Respiratory rate (breaths per minute) Leukocytes (leu x 10/3 in ml) Systolic BP (mm Hg)
0 days - 1 week > 180 x < 100 > 50 > 34 < 65
1 week – 1 month > 180 x < 90 > 40 > 19.5 x < 5 < 75
1 month – 1 year > 180 x < 90 > 35 > 17.5 x < 5 < 100
25 years > 140 > 22 > 15.5 x < 6 < 94
6 – 12 years > 130 > 18 > 13.5 x < 4.5 < 105
13 – 18 years >110 > 14 > 11 x < 4.5 < 117

Note: the values ​​shown represent the 5th or 95th percentile for the given age group. Any shock state can result in a systemic inflammatory response ( SIRS ). Unattenuated cascades of cytokines, complement and coagulation lead to a violation of the integrity of the vascular wall and an increase in the adhesiveness of the endothelium. The result is then extravasation, vasodilatation, thrombosis , tissue hypoxia. Lactic acidosis is an expression of mitochondrial hypoxia.

Shock classification

Shock classification often describes its own cause of shock condition, i.e. bleeding, trauma, sepsis etc. This terminology connected with the underlying cause is, of course, acceptable. However, using the selected criteria, it is possible to determine the shock states of the 5 main categories and to distinguish:

According to the Nelson Textbook of Pediatrics 2007, septic shock is excluded from the distribution shock group as a separate type of shock. This is due to its mixed nature of pathogenesis, where in addition to a distribution disorder we find hypovolemia ("third spacing") and cardiogenic depression (the effect of endotoxin, cytokines, etc.). Even outside of the above division, this only proves that in the clinical picture we often distinguish 'mixed shock' . It is a combination of two, sometimes three basic types. One type usually predominates in this mixed image. A typical example is traumatic shock, which is most often a combination of hypovolemic and distributional shock, but depending on the nature of the injury, it can also be a cardiogenic or obstructive shock.

Hemodynamic determinants of shock states (Fuhrman, Zimmerman – Pediatric Critical Care, 1998)
TYPE OF SHOCK Cardiac index SVRI MAP Pulmonary Capillary Wedge Pressure CVP
Hypovolemic ↔ or ↓ ↓↓↓ ↓↓↓
Cardiogenic – systolic dysfunction ↓↓ ↑↑↑ ↔ or ↓ ↑↑ ↑↑
Cardiogenic – diastolic dysfunction ↑↑ ↑↑
Obstructive ↔ or ↓ ↑↑ ↑↑
Distributional ↑↑ ↓↓↓ ↔ or ↓ ↔ or ↓ ↔ or ↓
Sepsis – early phase ↑↑↑ ↓↓↓ ↔ or ↓
Sepsis – late phase ↓↓ ↑↑ ↓↓ ↔ or ↓

Hypovolemic shock

Pathogenesis and characteristics

Hypovolemic shock is the most common shock condition in children. Hypovolemic shock is an absolute loss of effective circulating volume. Hypovolemia leads to a reduction in preload, subsequently stroke volume and cardiac output. Activation of peripheral and central baroreceptors results in the release of catecholamines, vasoconstriction and tachycardia. These compensatory mechanisms are effective for an acute loss of 10-15% blood volume. If the loss exceeds 20-25%, these mechanisms cease to be effective, the CO/CI decreases. Blood pressure is often normal due to an extensive increase in peripheral vascular resistance. The extraction of oxygen in the tissues increases, i.e. the arteriovenous difference expands. When compensatory mechanisms fail, tissue hypoxia and lactate MAC develop. hypotension, impaired consciousness, oligoanuria occurs. The terminal phase is characterized by myocardial dysfunction and cell death.

From a practical point of view, it is important to emphasize that blood pressure decreases only in the pre-terminal phase, after all compensatory mechanisms have been exhausted, so hypotension is in no case an early marker of the severity of the condition. On the contrary, attention should be paid from the beginning to clinical signs such as tachycardia, cold akra with weakened pulsations and prolonged capillary return, reduced diuresis.

Uncomplicated and timely treated hypovolemic shock does not lead to the development of capillary leak syndrome. However, patients with burns, with traumaof soft tissues are at risk. Also, severe and prolonged hypovolemic shock leads to capillary wall damage.

Hypovolemic shock is characterized by: a high systemic vascular resistance index (SVRI), a decrease in CVP and CI, widening of the AV difference, and late-onset hypotension. Tachycardia, low systolic pressure, and its increase with liver compression predict a good response to volume expansion.

Etiology

Therapy

The primary goal is to replenish fluids - crystalloids, colloids or blood. The total amount of fluids administered usually exceeds the absolute volume loss, as the capacity of the vascular space increases and cell membrane dysfunction occurs. As part of the treatment of hemorrhagic shock, administration of a greater proportion of colloids compared to crystalloids, especially plasmas and sufficient substitution with erysma is again in the forefront of interest. A recent recommendation that is already appearing for pediatric patients is the tactic of permissive hypotension, i.e. giving just enough fluid to ensure sufficient tissue perfusion, no more.

Distributive shock

Distributive shock (pediatrics)

Obstructive shock

Pathogenesis and characteristics

Obstructive shock is characterized by obstruction of the outflow of blood from the heart (right ventricular, left ventricular, biventricular obstruction). It is caused by the inability to generate adequate CO/CI despite normal intravascular volume and myocardial function. Filling pressures are elevated, cardiac output is reduced. Obstructive shock in resuscitation care is most commonly encountered with pneumothorax, aggressive artificial pulmonary ventilation, a. pulmonalis embolization, asthmatic stasis, cardiac tamponade, and pulmonary or systemic hypertension. APV has the same effect on preload and subsequently contractility as hypovolaemia and leads to a leftward shift of the Frank-Starling curve. Obstructive shock is characterized by hypotension/hypertension, decreased CO/CI, rise in CVP and PAWP, increase in SVRI.

Etiology

Cardiac tamponade

Cardiac tamponade is defined as hemodynamically significant compression of the heart in the pericardial envelope. The cause is transudate or exudate (hydropericardium), blood (hemopericardium), or gas in the pericardium (pneumopericardium).

The clinical presentation of tamponade is insidious, especially when it occurs against a background of an underlying cause such as malignancy, collagenosis, renal failure or pericarditis.

In the initial phase, the symptomatology is non-specific. When CO/CI decreases, the symptomatology is similar to congestive heart failure, but there is no evidence of congestion on lung X-ray. Physical findings suggestive of tamponade are pulsus paradoxus, narrowing of pulse pressure, a flutter murmur over the pericardium, or weakening of the oesophagus and distension of the jugular veins. The method of choice in diagnosis is echocardiography.

The symptomatology of cardiac tamponade is similar to congestive heart failure, however, there is no evidence of congestion on lung X-ray

. Template:Good Example If not addressed immediately (pericardiocentesis), electromechanical dissociation and death of the patient occurs. Pericardiocentesis is performed under echocardiographic control, blinded only as a last resort. The definitive solution, if needed, is surgical drainage of the pericardium.

Medical therapy cannot replace drainage, but may help us gain more time if pericardiocentesis or surgical drainage are not immediately available. We choose volum-expansion to maintain venoatrial gradients, and we administer inotropics, but these have little effect. Drugs such as diuretics or digoxin are contraindicated. If the patient is on UPV it is necessary to reduce PIP and PEEP.


Cardiogenic shock

Pathogenesis and characteristics

Cardiogenic shock is heart failure of various etiology, most often with a decrease in systolic volume. The hemodynamic picture of cardiogenic shock is essentially the same as that of hypovolemic shock with one very important exception: the filling pressures of the heart chambers are increased (similar to obstructive shock).

Clinically the most striking sign of left-sided failure is pulmonary edema and a cold periphery with impaired perfusion (impaired consciousness, oliguria), right ventricular failure in childhood is dominated by hepatomegaly and swellings can form, especially periorbitally. In children, it is most often a case of bilateral failure.

The most important diagnostic method, which will help to correctly determine the severity of cardiogenic failure, is echocardiography with Doppler imaging and, of course, electrocardiographic examination (in children, 12-lead is practically necessary to distinguish possible artifacts). Based on the mentioned examinations, it is possible to determine the optimal therapy and conditions for further monitoring. These also include the decision to indicate the introduction of invasive monitoring of minute cardiac output, monitoring of oxygenation parameters and pressures in the pulmonary basin. Stabilization of the circulatory situation is also a key prerequisite for successful therapy of the underlying disease in the event that cardiogenic failure is its complication.

In the conditions of resuscitation care, cardiogenic shock is most often caused by tachyarrhythmia or secondary impairment of cardiac functions (sepsis, hypoxia, prolonged hypovolemia, stage cardiopulmonary resuscitation) . Heart failure is the terminal stage of shock states of any etiology. The causes are not fully elucidated, but the influence of specific toxic substances with a direct cardiodepressive effect, myocardial edema, dysfunction of adrenergic receptors, altered movement of calcium in the sarcolemma, impaired coronary flow due to impairment of systolic and diastolic heart function is assumed.

UPV application of positive pressure significantly affects cardiac output. Within the left ventricle, UPV reduces both preload and afterload. Thus, UPV can have an adverse hemodynamic impact in patients with hypovolemia, when the decrease in cardiac output is potentiated. Conversely, in patients with fluid overload or left-sided heart failure, UPV has a favorable hemodynamic effect due to the reduction of preload and afterload. Within the right ventricle, the situation is more complicated. UPV also reduces right ventricular preload, but the effect on afterload is a function of pulmonary vascular resistance. This can be reduced or increased due to UPV, i.e. right ventricular afterload during UPV can be reduced or increased.

When choosing a ventilation mode, we always take into account its potentially negative effects on circulation, including regional perfusion disorders. Events that significantly affect myocardial contractility include the entire complex of mediators systemic inflammatory response of the organism to stress.

Searchtool right.svg For more information see Heart Failure (Paediatrics).
Cardiogenic shock is characterized by: hypotension, decreased CO/CI, rise in CVP and PAWP, increase in SVRI.
Characteristics of congestive heart failure
Anamnesis Physical Finding X-ray of the chest
  • high respiratory effort
  • long feeding time
  • not thriving
  • significant sweating
  • frequent respiratory infections
  • cardiomegaly
  • pulmonary venous congestion
  • hyperinflation

Etiology

When dividing by etiology, it is possible to take into account three basic categories:

myopathy
mechanical involvement of the myocardium
arrhythmia
  • AV Blocks
  • tachyarrhythmia: supraventricular, ventricular

Cardiomyopathy

Under construction / Forgotten

This article was marked by its author as Under construction, but the last edit is older than 30 days. If you want to edit this page, please try to contact its author first (you fill find him in the history). Watch the discussion as well. If the author will not continue in work, remove the template {{Under construction}} and edit the page.

Last update: Friday, 10 Nov 2023 at 1.12 pm.

Patients with dilated cardiomyopathy may be in shock condition.

  • Myocarditis is one of the most common causes of dilated cardiomyopathy in previously healthy children.

Clinical manifestations of myocarditis are multifaceted.

  • May be in the foreground
    • myocardial dysfunction,
    • dysrhythmia
    • or may be clinically "silent" cases.

The most common symptoms are

The most common life-threatening dysrhythmias are

  • supraventricular and
  • ventricular tachycardia.

Rarely can we encounter rhythm disorders - AV blocks,

  • which lead to bradycardia and hypotension and are also extremely serious.

Approach to a patient with myocarditis or other forms of dilated cardiomyopathy is the same as for patients in cardiogenic shock, but the response to traditional inotropic therapy may not be sufficient. In addition, infusion of catecholamines in these cases can lead to the development of severe dysrhythmias.

  • Recommended for diagnosed myocarditis
    • corticoid therapy or better HDIVIG at a total dose of 2 g / kg (1 g / kg / day for 2 days).
      • These medicines may modulate the inflammatory response.
  • Rescue therapy is ECMO.

Hypoxic-ischemic impairment

Shock following a severe hypoxic-ischemic event (drowning, ALTE, prolonged CPR) is most often cardiogenic. Shock is characterized by low CO/CI, elevation of both right and left ventricular filling pressures (increased CVP and PAWP), increased SVR and PVR, and increased oxygen extraction index. In most patients, arterial pressure is elevated due to increased peripheral vascular resistance. Studies have well documented the development of both systolic and diastolic myocardial dysfunction after successful cardiopulmonary resuscitation.

Therapy

In the therapy of cardiac arrhythmias, it is necessary to choose an antiarrhythmic drug with the least cardiodepressive effect, reduce the metabolic demands of the organism and the myocardium by effective analgosedation and therapy of febrile states. A basic condition for the adjustment of myocardial function is also the care of the internal environment, especially acid-base balance, blood gases and electrolyte balance with a focus on the prevention of disturbances in the levels of potassiumu, calciumu and [[magnesium] ]at. Therapy with inodilators and inoconstrictors must always be titrated and flexible. The sufficiency of cardiac output is a relative quantity and must always be related to a specific metabolic situation and type of disease.

When developing a shock state in the youngest children (newborns, infants < 4 months), we must first think of sepsis or heart failure (unrecognized VVV or prolonged tachydysrhythmia)!

Dissociative shock

Dissociative Shock (Pediatrics)

Monitoring/diagnostic management

Circulation and ventilation

It is necessary to monitor the heart rate, blood pressure invasively – IBP (monitor MAP and perfusion pressure values), via CVK then CVP and SvcO2 , continuous ECG and pulse oximetry monitoring.

Indications for the introduction of a Swan-Ganz catheter are extremely rare in pediatrics (severe form ARDS using PEEP > 10 cmH2O, monitoring of patients after some corrections [[Congenital heart defects|VVV heart] ]). A Swan-Ganz catheter is also considered in patients who remain in shock despite pressure-correcting therapy but SvcO2 is < 70%. Due to the invasiveness and risk of introducing a pulmonary catheter, semi-invasive options for measuring cardiac output are clearly preferred today, e.g. the PiCCO method, which also enables the determination and calculation of other hemodynamically important parameters.

We intermittently check blood gases and ABR from arterial blood (arterial line). The advantage is etCO2 monitoring during UPV, which allows to reduce the frequency of blood sampling.

As part of the ventilation, we then monitor the respiratory frequency and, when applying UPV, a number of parameters depending on the use of pressure or volume ventilation. But we always follow PFi = pO2 / FiO2, oxygenation index = (FiO2x Pmaw) / pO2, lung compliance and resistance, Vd/Vt parameter.

Standard examinations are chest X-ray, echocardiography and ECG (12-lead recording). In the intensive care environment, this is the so-called bed-side monitoring.

Non-invasive blood pressure monitoring (NIBP)

For the measurement of non-invasive monitoring of blood pressure, we have a classical auscultation method with mercury tonometer, Doppler technique and oscillometric determination.

The Auscultation method has a disadvantage for the youngest children, for the non-cooperating and, if necessary, for frequent measurements.

Doppler technique is suitable for young children and for conditions with impaired perfusion. A small Doppler probe is located above the radial or brachial artery. Blood movement is excellently sensed by sensitive ultrasound. The cuff placed on the upper arm is inflated until the Doppler signal disappears completely. It is then slowly released. Systolic pressure is subtracted when the first Doppler signal appears, diastolic pressure is subtracted when signal length and quality decrease. The correlation with the pressure measured directly intraarterially is good, but the method is not suitable for continuous measurement.

The oscillometric method is easy to implement. The principle is that when the cuff is inflated, the blood flow in the artery causes oscillations. If the cuff pressure begins to drop, the device registers systolic and dyastolik blood pressure and mean arterial pressure.

It always depends on the adequate width of the cuff: too narrow a cuff leads to the measurement of falsely high values, too wide cuff to measure falsely low values ​​of BP (in this case, however, the significance of the error is only small).

All techniques have limitations in conditions with a significant decrease in cardiac output, in severe hypotension or systemic vasoconstriction, in conditions with generalized edema, in extreme obesity.

Pulse pressure (PulP)

Pulse pressure (pediatrics)

Invasive blood pressure monitoring (IBP)

Arterial cannulation, in addition to the benefit of continuous blood pressure monitoring, may be helpful in assessing blood pressure. A normal arterial pulse curve has a sharp rise during the rapid ejection phase. It is followed by a phase of slow ejection, which appears as a plateau with a subsequent drop in arterial pressure. A dicrotic finding indicates the end of ejection and closure of the aortic valve. The subsequent drop in arterial pressure during diastole is attributed to aortic run-off (see pulse pressure). We see a reduction in pulse amplitude (similar to pulse pressure) in patients with reduced cardiac output. A flat onset of the curve shape during the fast ejection phase is indicative of a contractility disorder. We see an increase in pulse amplitude in conditions with hyperkinetic circulation.

Hemodynamics

In addition to routine methods such as CVP or IBP measurements, modern thermodilution methods and the ability to analyze the arterial pressure pulse curve (eg. the PiCCO method) make it possible to determine more detailed hemodynamic parameters. Thermodilution methods are proving to be more accurate than ultrasounds determination of cardiac output (EBM data). For the needs of pediatrics, the most important is the indexed values ​​of individual parameters, which are related to the body surface and thus allow comparison between the values ​​of patients of different age groups.

Parameters defining the preload

In addition to CVP (pressure parameter defining the right ventricular preload), which is the most commonly used preload marker, we can monitor a number of other parameters in more detailed hemodynamic measurements:

  • global end-diastolic volume (GEDVI) indicates the volume of blood contained in all 4 cavities of the heart at the end of diastole,
  • intrathoracic blood volume (ITBVI) indicates the volume of blood contained in all 4 heart cavities at the end of diastole + blood volume in the pulmonary vessels (ITBVI = 1.25 x GEDVI).

ITBVI and GEDVI show greater sensitivity and specificity in determining cardiac preload than standard CVP and PAWP, but also right ventricular end-diastolic volume calculated by echocardiography. Another advantage of ITBVI and GEDVI is that they do not interfere with artificial lung ventilation. Indexed values must be used for children.

In patients with UPV, we can use another parameter of hemodynamics – (stroke volume variation, SVV – dynamic parameter). SVV reflects changes in cardiac preload depending on UPV cycles. An increase in the SVV value predicts the need for volume expansion.

Parameters defining afterload

In practice, as a determinant of afterload, we evaluate systemic and pulmonary vascular resistance (based on Ohm's law). Knowing the cardiac output (CO) values, we can calculate the value of systematic vascular resistance (SVR) :

SVR = (MAP – CVP) x 80 / CO
PerP = MAP – CVP
SVR = (MAP – CVP) x 80 / CO = PerP x 80 / CO

Where PerP = perfusion pressure, is the difference between mean arterial pressure and central venous pressure. The indexed value of SVR related to body area is SVRI:

SVRI = (MAP – CVP) x 80 / CI = PerP x 80 / CI

Based on these relationships, it is possible to increase cardiac output by reducing vascular resistance. At the same time, however, it follows that good blood pressure may not indicate good cardiac output (vascular resistance may increase with decreasing cardiac output).

The same applies to pulmonary vascular resistance :

PVR = (MPAP – PAOP) x 80 / CO, resp. PVRI = (MPAP – PAOP) x 80 / CI

MPAP is mean pulmonary artery pressure and PAOP is pulmonary artery opening pressure; (Cave!: confused with a pressure wedge. PAWP pulmonary, Pulmonary artery wedge pressure).

Extravascular lung water

Extravascular lung water (EVLW) indicates the volume of free water in the lungs and allows bedside quantification of the severity of pulmonary edema. In addition to pulmonary edema, it correlates with the severity of ARDS or the length of UPV. It is a better indicator of pulmonary edema than a chest x-ray.

Contractility

Contractility is the intrinsic inotropic activity of the myocardium independent of preload and afterload. Its exact determination is very difficult. It is affected by ionized calcium, compliance and the supply of myocardial energy substrates. An indicator of contractility is the ability to develop pressure per unit time, in practice the following is used:

  • maximum ventricular elastance index according to Sugi and Sagawi,
  • heart rate values ​​left resp. right ventricle: LVSW resp. RVSW (left / right ventriculus stroke work),
LVSW = 0,0136 x SV x (MAP – PAOP)
RVSW = 0,0136 x SV x (MPAP – CVP)
  • global ejection fraction (GEF) and cardiac function index (CFI) derived from parameters measured by the PiCCO system
  • the level of myocardial contractility can also be estimated in the simplest way from the steepness of the rise of the pulse curve during direct measurement of arterial pressure.
Cardiac output

Within the possibilities of more detailed hemodynamics, we are able to determine the stroke volume (SV). Based on this value, we can calculate cardiac output (CO), which is the product of stroke volume and [cardiac frequency]] (heart rate) :

CO = HR x SV

By recalculation to the body surface, we obtain the cardiac index = CI.

CO calculation using Fick´s formula :

CO = [VO2 / (CaO2 – CvO2)] x 10
Pulmonary wedge blood pressure measurement (PAWP)

We measure the PAWP (pulmonary artery wedge pressure) value with a Swan-Ganz catheter. It is the result of pulmonary resistance and left heart function. Its values ​​are close to the pressure in the left atrium. Used to accurately determine CI (cardiac index). It has a rare application in pediatrics.

Reference values: 6-16 cm H 2 O (ideally 7-15 cm H 2 O)

Selected hemodynamic parameters
parametr jednotka norma
cardiac output CI (cardiac index) l/min/m2 3,0–4,5 (5,5)
preload CVP (central venous pressure) mm Hg 3–10
lung EVLW (extravascular lung water) ml/kg 3,0–7,0
afterload SVRI (systemic vascular rezistance index) dyne.s.cm/5.m/2 800–1600
contractility EF (ejection fraction) % 55–75

Consciousness

Within the framework of the shock state, the "impairment of consciousness" can be expressed in many different ways, both qualitatively and quantitatively. Classification scales are used for objectification: Beneš score and above all Glasgow coma scale (GCS).

We monitor the state of the pupils, stem reflexes (nasopalpebral, corneal), the state of muscle tone, possibly complete neurological monitoring as needed. If the condition requires "absolute" monitoring of CNS function, we use continuous EEG, intraparenchymatous measurement of intracranial pressure (ICP), multimodal intraparenchymatous sensors (monitor pH, pCO2 and pO2), monitoring of blood saturation in the jugular bulb SvjO2, transcranial Doppler ultrasonography, spectroscopy using near infrared radiation (near infrared spectroscopy = NIRS), ev. microdialysis. When imaging methods are indicated, we prefer CT and MRI.

Laboratory

As part of biochemical monitoring we investigate: KO + diff. (possibly also blood group), creatinine, urea, iontogram, liver tests, S-amylase, glycemia, albumin, lactate, S-osmolality and hemocoagulation.

We are interested in chemistry and sediment, urinary osmolality, waste ions, creatinine and urea from urine examination. Hyperosmolar urine with low natriuresis is demonstrated in the case of a deficit of effective circulating volume or, conversely, hypoosmolar urine with high natriuresis in acute renal failure (shock kidney). Evidence of microalbuminuria is a marker of endothelial damage. A fundamental examination before starting ev. antibiotic therapy is collection by cultures (blood culture, urine, CSF, purulent collections - pleural exudate, joint effusion, puncture of abscess, etc.). From a general point of view, we demonstrate a lactate MAC, when lactate is > 2 mmol/l, a widening of the anion gap and a decrease of bicarbonate. Unfortunately, the specificity of hyperlactacidemia is not high, a simple lactate value does not reveal regional perfusion disorders, the lactate level also depends on hepatic production. Considering these aspects, the modern method gastric tonometry appears to be more advantageous for assessing organ perfusion.

The value of "glycemia" can be increased (more often) or decreased. Hyperglycemia is caused by insulin receptor resistance to insulin.

Changes in serum osmolality and blood biochemistry are dependent on the precipitating cause of the shock state. A sudden decrease in leukocytes can indicate a violation of the integrity of the vascular wall. The finding of hypophosphatemia indicates a major disorder of intracellular metabolism, as phosphorus is a valuable intracellular ion.

It is essential to monitor "diuresis", in the case of a shock state always an hourly diuresis with a 6-hour fluid balance. This means the unconditional insertion of a urinary catheter. A good diuresis is an excellent reflection of the adequacy of organ perfusion. But beware – sufficient diuresis can be misleading in the polyuric type of acute renal failure. We also monitor peripheral and central body temperature, as well as inflammatory markers (especially CRP and procalcitonin) as part of comprehensive diagnostics.

Gastrointestinal tract

We always insert a Nasogastric tube (NGS). At first, we use it to decompress the GIT and suction the stomach contents to prevent possible aspiration. The implementation of NGS is absolutely essential in patients with suspected sudden abdominal events where we must not give anything p.o., or in patients after drowning where there is a high risk of aspiration.

Gradually, NGS is used as a way of enteral nutrition. In the case of gastric atony, it is necessary to implement enteral nutrition via a nasojejunal tube (in this case, bolus feeding can no longer be used, but continuous feeding - usually 21 hours with a three-hour break).

The basis is the monitoring of peristalsis, evaluation of residues in the probe, registration of the number and nature of stools. Stool examination is used for culture, proof of occult bleeding or proof of clostridial antigen and toxin (Clostridium difficile). The most important imaging examination is undoubtedly sonography.

As part of liver function, we monitor complete liver tests (bilirubin direct and indirect, transaminases, GMT, ALP, LDH, cholinesterase), ammonia, coagulation (especially Quick and fibrinogen), albumin, glycemia and urea.

The modern method of gastric tonometry is suitable for assessing organ perfusion. Its advantage is the detection of regional hypoperfusion affecting the digestive tract (as a prototype of splanchnic circulation), the advantage is also continuous measurement. However, this method assumes that hypoperfusion of the splanchnic region will precede systemic perfusion. The disadvantage of this method is its relative invasiveness.

Methods monitoring regional perfusion

The values of serum lactate or the values defining MAC are a reflection of the global situation and, moreover, their results are mostly limited by the collection of venous blood. Methods defining regional perfusion and at the same time minimally invasive are in the foreground: gastric tonometry, NIRS (near-infrared spectroscopy), rectal tonometry, sublingual capnometry. All these methods are in the research stage and their routine use is not part of the article. recommended.

Main principles of care for patients in shock

Shock is defined as a syndrome with inadequate tissue oxygenation. Therapeutic efforts therefore try to establish a balance between the supply and the actual need for oxygen. Oxygen consumption is reduced by intubation, mechanical ventilation, sedation, myorelaxation, control of hyperpyrexia. On the other hand the oxygen supply is increased by oxygen therapy with either non-invasive or invasive airway management.

  • CVP 5 to 10 cm H2O
  • PAWP 7 to 15 cm H2O
  • age-appropriate values MAP and PerP
  • CI 3 to 6 l/min/m2
  • SvcO2 > 70 %
  • O2ER < 30 %
  • minimization of myocardial damage – physiological standards of AST, troponin, CK-MB, ECG, echokardiography
  • adequate airiness of the lungs
  • lactate < 2 mmol/l
Organ dysfunction criteria:
Cardiovascular system Respiratory system CNS
decreased BP < 5th percentile for age or sBP < 2 SD despite bolus volume expansion > 40 mL/kg/1 hr.


or


he need for inotropic support to maintain BP within the physiological range


or


two of the following criteria: otherwise unexplained MAC with BE -5 mmol/l; lactate increase > 4 mmol/l; capillary return > 5 seconds; peripheral and central temperature difference of > 3 degrees C.

PFi < 300 in the absence of cyanotic heart disease

or pre-existing lung disease

or

pCO2 > 65 torr or > 20 torr compared to the patient's normal value

or

need FiO2 > 0.50 to maintain SaO2 > 92%

or

the need for non-elective non-invasive or invasive ventilation

PFi < 300

the GCS < 11 p.

or acute decrease of theGCS > 3 p.

Organ dysfunction criteria II.:
Hematopoiesis Kidneys Liver
thrombocytes < 80,000 or a decrease of > 50% from the highest value recorded in the last 3 days (for patients with chronic hematological or oncological diseases)


or


INR > 2

an increase in S-creatinine > 2x over the upper limit or a double increase in the value compared to the normal value of the given patient

or

oligoanuria < 0,5 ml/kg/hod.

total bilirubin > 4 mg/dl (does not apply to newborns)

ALT increase > 2x over the upper limit

It is necessary to think about the possible complications of shock conditions:

The aforementioned complications are a sign of the development of MODS (multiple organ dysfunction syndrom) and they significantly increase morbidity and mortality of the patients.

Attributes of the circulatory system and their evaluation:
right ventricular preload
left ventricular preload
global preload parameters
  • GEDVI
  • ITBVI
afterload
  • SVRI (Systemic Vascular Resistance Index)
  • PVRI (Pulmonary vascular resistance Index)
  • MPAP (Mean pulmonary arterial pressure)
  • MAP
contractility
  • maximum ventricular elastance index according to Sugi and Sagawi
  • ejection fraction (echocardiography)
  • GEF
  • CFI
  • pulse work of the left (LVSW) and right (RVSW) ventricle
  • the steepness of the rise of the pulse curve
tissue perfusion
cardiac output
  • CO/CI (PiCCO x Fick's principle)
  • echocardiography -> ejection fraction
  • SvcO2



Symptomatology of shock states

Resting tachycardia is characteristic (the heart rate must always be assessed according to the child's age and body temperature), a poorly palpable pulse on the small arteries of the leg, possibly cyanosis. Blood pressure can also be increased in a certain phase of shock, the cause being a pronounced α-mimetic reaction during the centralization of circulation. Especially in children, shock often occurs under the image of low flow , i.e. with an increased SVRI and a decrease in CI (this is typical, for example, of hypovolemic shock, burn trauma). We register hypotension when the effective circulating volume drops by 20-30% of the appropriate value. Physical examination shows cool, map-like skin and capillary refill time > 3 seconds. A valuable sign of the quality of organ perfusion is the previously mentioned monitoring of hourly diuresis, which drops into the zone of oligoanuria when the kidneys are hypoperfused.

In the initial stages of shock, RAL with hyperventilation is present, gradually transitioning to lactate MAC , when we clinically observe raspberry-red mucous membranes and also hyperventilation = Kussmaul breathing (if the patient still has enough energy), as a respiratory compensation of the metabolic disorder.

  • Severe MAC with pH < 7.2 reduces cardiac contractility, lowers the threshold for the onset of arrhythmias , and causes dilation of arterioles and thus hypotension with compensatory tachycardia.
  • In hypovolemic shock, signs of dehydration predominate , i.e. dry mucous membranes, absent tears during crying, reduced skin turgor, haloed and sunken eyes, sunken large fontanelle, non-palpable liver in newborns and infants.
  • In cardiac failure, on the other hand, we can notice peripheral edema and the most typical symptom in children is hepatomegaly.
  • As part of the CNS function, we record restlessness, behavioral change, impaired consciousness, which we objectify with the Glasgow coma scale.
  • It is also important to determine and compare the peripheral temperature (measured on the dorsum of the leg) and the central temperature measured in the anus with a rectal sensor. A difference between central and peripheral temperature > 8 °C is a sign of shock circulation. A difference between central and peripheral temperature > 2 °C indicates increased α-mimetic activity.


Therapeutic interventions

Patient Assurance

The basic step in approaching a patient in a state of shock is to ensure the patency of the airways, administer 100% oxygen, ventilate with an ambuvac mask if necessary or intubate the patient and, if possible, start UPV as soon as possible. . Regardless of the etiology of the shock state, quick decisions should always be made for ventilatory and circulatory support. The introduction of UPV in shock states is not generally applied only on the basis of a diagnosis of global respiratory insufficiency, but hypermetabolism, hyperkinetic circulation, resistant metabolic acidosis, impaired consciousness and extreme work of breathing may lead to a decision on adequate provision of the child. We therefore indicate early intubation and UPV (in general, sooner rather than later). It is necessary not to leave the child in respiratory distress for too long. UPV allows redistribution of cardiac output from the respiratory muscle area toward vital organs, plus positive pressure UPV reduces afterload and can increase stroke volume. The disadvantage of UPV in patients with hypovolemia is that during positive pressure ventilation preload continues to decrease and hypotension can manifest.

If the anamnesis or clinical examination indicates pneumothorax or hemothorax, we will consider the urgency of performing a pleural puncture. At the same time, it is necessary to ensure circulation, i.e. ensure intravenous (2 IV lines are ideal) or intraosseous access. In neonates, we prefer umbilical vein cannulation. For children > 6 years old, an alternative is when it is impossible to provide i.v. entry cannulation of the central venous course, if an experienced doctor who controls the technique is available and the patient is in an environment where complications arising from the cannulation can be dealt with urgently. After the basic securing of entry into the circulation, the next step is the elective securing of the CVK and arterial line. The goal is to achieve CI 3.3–6 l/min/m2 and oxygen consumption VO2 (oxygen consumption) > 200 ml/min/m2 /vul>. The recommended Hb value for shock states is approx. 100 g/l, Ht 0.30–0.40.

Volume therapy

Volume therapy in shock (pediatrics)

Inoconstriction and inodilation treatment

The basic goal of the administration of these substances is to increase tissue perfusion and maintain perfusion gradients, however, a prerequisite for their effect is sufficient filling of the vascular bed. The administration of inodilating substances in a hypovolemic patient can cause serious complications resulting from hypotension or tachyarrhythmia. Administration of inoconstrictive substances is not effective in normal doses. Vasopressors should be titrated according to perfusion pressure or systemic vascular resistance so that diuresis and physiologic creatinine clearance are optimal.

It should be noted that if the shock is complicated by myocardialial dysfunction, then preparations with a positive inotropic effect (increasing contractility) can reduce preload and afterload, improve myocardial oxygen supply by increasing coronary perfusion pressure. Coronary flow is also improved by lengthening the diastolic phase while lowering the heart rate. However, if a drug with a positive inotropic effect is administered to a patient with normal cardiac contractility, the result may be increased myocardial oxygen consumption.

We also ensure normal reactivity of the myocardium and vascular system by maintaining normal acid-base ratios and electrolyte levels, especially potassiumu, magnesiumu and calciumu. Inoconstrictors or inodilators are usually administered with a linear dispenser. When dealing with circulatory complications in critically ill patients, we use one or two substances, exceptionally a larger number. The effect on individual receptors is in some cases dose-dependent (e.g. dopamine, adrenaline) and their introduction into the systemic circulation should be completely separated from other substances. We preferably use multi-channel central venous catheters for this purpose. Catecholamine solutions must be protected from light and we require intra-arterial BP measurement when administered. Administration into peripheral veins causes early reactive inflammation. Only dobutamine, other catecholamines can only be administered into the peripheral watercourse for a short time and with maximum dilution.

From a clinical point of view, it is possible to divide the group of inotropic substances into substances that are inoconstrictive (noradrenaline, adrenaline, dopamine) and substances that are inodilatory (dopexamine, dobutamine, isopreterenol). A specific group of inotropic substances are phosphodiesterase III blockers (PDE III) = inodilators in the narrower sense of the word. Catecholamines stimulate α-1, α-2, β-1, β-2 and dopaminergic = ɗ-receptors and lead to an increase in cAMP (cyclic adenosine monophosphate), PDE III inhibitors increase cAMP by preventing its degradation inside cells.

Mechanism of action

Adrenergic receptors are represented by 8 gene subtypes, but from a practical point of view we distinguish α-1, α-2, β-1, β-2 and ɗ-1 and ɗ-2 receptors.

Both β-1 and β-2 receptors are located in the ventricular myocardium muscle and the atrial muscle. In addition, β-2 receptors are located on the presynaptic endings of sympathetic nerves and stimulate the release of neurotransmitters. In the smooth muscle of blood vessels, activation of β-2 receptors leads to vasodilation, in the smooth muscle of bronchi to bronchodilation (through the mechanism of smooth muscle relaxation). β-2 receptors in the SA node are responsible for the positive chronotropic effect. β-1 stimulation of the myocardium increases not only inotropy (force of contraction), but also varying degrees of chronotropy (increased heart rate), dromotropy (increased conduction velocity) and bathmotropy (increase in irritability).

α-1 receptors are mainly found in the smooth muscle of blood vessels, where they cause vasoconstriction. However, α-1 receptors are also found in the muscle of the myocardium. Their irritation has a positive inotropic effect, but does not affect the heart rate. α receptors were originally differentiated with respect to their location on nerve endings. The postsynaptic receptor was designated as α-1 and the presynaptic receptor as α-2. Stimulation of the α-1 receptor leads to the contraction of smooth muscle, while stimulation of the α-2 receptor inhibits the release of noradrenaline from presynaptic granules, thus promoting vasodilation.

Dopaminergic (delta) receptors are divided like others into postsynaptic ɗ-1 and presynaptic ɗ-2. ɗ-1 receptors are located in the smooth muscle of renal, splanchnic, coronary and cerebral vessels. Their activation leads to vasodilation. ɗ-2 receptors inhibit the release of noradrenaline from sympathetic endings.

The mechanism of action of phosphodiesterase blockers is based on the fact that normally cAMP is inactivated by phosphodiesterase, which causes its conversion to AMP. Inhibition of phosphodiesterase increases cAMP concentration and enhances β-receptor mediated activity.

Disorders of receptor function

As part of the receptor disorder, the mechanism of reducing the sensitivity of receptors is best described on the principle of agonist-mediated desensitization. Within seconds to minutes after agonist binding to the receptor, uncoupling may occur due to receptor phosphorylation (phosphorylation involves multiple mechanisms). In addition to agonist-mediated desensitization, there are other factors involved in so-called down-regulation: endotoxin, TNF, congestive heart failure. Another mechanism of down-regulation of receptors is their sequestration inside target cells and their subsequent degradation.

Inoconstrictors

Adrenaline

Adrenaline is produced in the adrenal medulla (tyrosine -> DOPA -> dopamine -> noradrenaline -> adrenaline). Adrenaline is a potent, directly acting α-1, β-1 and β-2 receptor agonist.

Adrenaline in low concentrations first affects β-2 receptors. It potentiates the activity of the SA node, increases the heart rate, helps vasodilation, i.e. a decrease in SVRI and decreases diastolic blood pressure. A decrease in SVRI further increases the direct chronotropic effect of adrenaline. Unfortunately, the increased consumption of oxygen by the myocardium is a disproportionate increase in inotropy and thus decreases myocardial performance. As the concentration increases, the α-1, β-1 component rapidly enters. Stimulation of α-1 receptors leads to an increase in SVRI (significantly in the area of the splanchnic) and at the same time pulmonary vascular resistance. High doses of adrenaline or its use in patients with myocarditis or infarction can lead to the development of severe atrial and ventricular dysrhythmias.

In practice, the combination of the β-2 effect, which lowers diastolic pressure, and the α-1 effect, which increases systolic pressure, increases the pulse pressure value.

During stress, when a large amount of adrenaline is flushed out, receptors can be desensitized very quickly, even before exogenous adrenaline administration begins.

Adrenaline is intended for the treatment of shock in connection with myocardial dysfunction, especially in patients after successful cardiopulmonary resuscitation or after a hypoxic-ischemic insult. In septic patients, where there was no improvement in the condition after volume expansion, continuous infusion of adrenaline can be beneficial. Adrenaline is most useful in conditions with hypotension, low CI and high SVRI (cold shock = low flow). At low doses of 0.005–0.1 μg/kg/min, SVRI slightly decreases, but heart rate, blood pressure, and cardiac output increase. In medium doses of 0.1–1.0 μg/kg/min. α-1 adrenergic activity begins to predominate and the further increase in CO balances the still persistent vasodilation (induced by the activation of β-2 receptors), which, as already mentioned, leads to a decrease in diastolic pressure. In very high doses (> 1–2 μg/kg/min.), vasoconstriction by activation of α-1 receptors predominates, splanchnic perfusion is significantly reduced, afterload increases, and myocardial function may decrease with elevation of serum [[lactate] ]at.

As part of cardiopulmonary resuscitation, when we administer bolus high doses, we use precisely α-1 activity, which brings massive vasoconstriction everywhere, except for the coronary and cerebral blood vessels, at the same time leading to an increase in SF, BP and vascular resistance. Adrenaline is administered as a bolus dose of 0.01 mg/kg (10 μg/kg). Previously recommended subsequent 10-fold higher doses (so-called high dose epinephrine) are no longer recommended. The same dose is given intraosseously, 0.1 mg/kg is given intratracheally. Adrenaline has a number of side effects. Within the CNS it leads to anxiety, nausea. High doses can cause myocardial ischemia, arrhythmias. Although ventricular tachycardia is rare in childhood, it occurs more often with concomitant myocarditis, hypokalemia and hypoxemia. Adrenaline also has significant metabolic effects: stimulation of β-2 receptors, which are associated with Na-K-ATPase in muscles, leads to hypokalemia (infusion of 0.1 μg/kg/min. leads to a decrease in potassium by 0.8 mmol/l ). β-adrenergic mediated suppression of insulin results in hyperglycemia. Adrenaline is degraded by monoamine oxidase or catechol-o-methyltransferase. The recommended dosage is 0.005–2.0 μg/kg/min, as part of cardiopulmonary resuscitation we administer 10 μg/kg i.v. as a bolus. Adrenaline is stable when diluted to 5% glucose or 1/1 FR.

Indications:

  • shock in association with myocardial dysfunction, especially in patients after successful cardiopulmonary resuscitation or after a hypoxic-ischemic insult.
  • sepsis, where the condition did not improve after volume expansion, dopamine or dobutamine and high SVRI (low flow) persists.
  • conditions with hypotension, low CI and high SVRI.
  • cardiopulmonary resuscitation
Noradrenaline

Noradrenaline is a potent inotropic substance with a direct effect on β-1 and α-1 receptors. It has a powerful vasoconstrictive effect, as α-adrenergic stimulation is not opposed by the β-2 effect. Noradrenaline does not increase the heart rate, as it reflexively reduces the activity of the SA node through the vagus nerve and thus eliminates the expected β-1 chronotropic effect. Noradrenaline is also powerful inotropic effect. It mainly increases diastolic BP and diuresis. An increase in afterload tends to increase oxygen consumption in the myocardium, however noradrenaline reflexly reduces heart rate and thereby reduces myocardial oxygen consumption and improves coronary flow in diastole. It has no β-2 agonist effect. It is one of the most widely used drugs in the treatment of circulatory insufficiency in resuscitation care. It is the vasoconstrictor of first choice today. Noradrenaline improves perfusion in severely hypotensive children with low SVRI and normal or elevated CI. Typical choices are septic or anaphylactic shock. Noradrenaline, like other catecholamines, should be administered only after volume depletion has been completed, ideally in patients where both SVRI and CO/CI can be assessed. In children, noradrenaline is recommended for the high flow form of shock, which is refractory to volume expansion and dopamine. On the other hand, norepinephrine can increase blood pressure without improving organ perfusion. Typical cases are low CI, insufficient volume expansion, increase in PAWP. The use of high doses of norepinephrine, which increase pressure but do not improve organ perfusion, may contribute to the development of MODS. In general, however, the limitation of upper doses of noradrenaline/adrenaline is the occurrence of adverse effects, i.e. myocardial ischemia, tachycardia and arrhythmias. In case of extravasation, we quickly infiltrate the affected tissue with phentolamine (5 to 10 mg in 10 ml 1/1 FR). The recommended dosage is 0.01 to 1.0 μg/kg/min. The wide range of recommendations is due to the need for titration of continuous noradrenaline administration. Noradrenaline is stable when diluted to 5% glucose.

Indications:

  • the most frequently used drug in the treatment of circulatory insufficiency in resuscitation care, it is today the vasoconstrictor of first choice
  • severe hypotension with low SVRI and normal or elevated CI (septic or anaphylactic shock)
  • high flow form of shock that is refractory to volume expansion and dopamine.
Dopamine

Dopamine is a central neurotransmitter, it is also found in sympathetic nerve endings and in the adrenal medulla, where it is a rapidly usable precursor for the formation of noradrenaline. Dopamine affects D1 and D2 receptors (dopa receptors), which are located in the brain and vascular bed kidney, splanchnic and [[heart]. Depending on the dose, it also stimulates α + β receptors, but the affinity for these receptors is lower. Stimulation of D-1 receptors leads to vasodilation, increased perfusion, and can increase the excretion of solutes and water in the kidneys. However, meta-analytic studies confirm that so-called renal doses of dopamine of 2.5 to 5 μg/kg/min. they are not recommended because their protective effect on increasing renal perfusion has not been confirmed (Intensive Care Med 2002). By influencing D-2 receptors, dopamine regulates the release of aldosterone and prolactin and also affects the renal clearance of solutes. The fact that newborns and infants show lower sensitivity to dopamine is a tradition, but not definitively confirmed. Dopamine is recommended as the drug of first choice in children in septic shock where volume expansion has failed, dopamine is suitable in children with mild myocardial dysfunction and hypotension after cardiopulmonary resuscitation. Severe contractility or vasomotor impairment requires the use of other catecholamines. Children with primary myocardial dysfunction and in the absence of hypotension benefit more from administration of dobutamine or milrinone. At a dose below 5 μg/kg/min, the effects are dominated by influencing D-1 receptors, at a dose of 5 to 10 μg/kg/min, β-1 shows adrenergic effects, at doses of 10 to 15 μg/kg/min, it has a mixed α + β effect . Dose increase to > 15 μg/kg/min. leads to increased stimulation of α-1 receptors, increasing dose > 22–25 μg/kg/min. is no longer relevant and it is necessary to choose another inotropic agent. In shock state with hypotension, we start administration at a rate of 5 to 10 μg/kg/min., increasing the infusion rate in steps of 2 to 5 μg/kg/min. We assess the effect of the treatment according to the difference in central and skin temperature, capillary return, diuresis. When doses > 25 μg/kg/min are required, SVRI (predominance of α-receptor stimulation) increases more significantly than cardiac output. We refer to this condition as dopamine-resistant. The next step is the use of noradrenaline for high flow form (warm shock) or adrenaline for low flow (cold shock). Disadvantages of dopamine include its proarrhythmogenic effect, tachycardia and increased myocardial oxygen consumption, hypertension. With the exception of bipyridines, all inotropic agents increase myocardial oxygen consumption because they increase myocardial workload. The effectiveness of dopamine is significantly limited in patients with a depleted supply of endogenous catecholamines. Dopamine and other β-agonists decrease PaO2 by interfering with alveolar pulmonary vasoconstriction (exacerbating the V/Q imbalance). In case of extravasation, we quickly infiltrate the affected tissue with phentolamine (5 to 10 mg in 10 ml 1/1 FR). The recommended dosage is 5 to 20 μg/kg/min. Dopamine is stable when diluted to 5% glucose or 1/1 FR.

β-agonists have a hypokalemic effect (by affecting Na-K-ATPase) and reduce PaO2 (the vasodilatation induced by them in the pulmonary basin interferes with the mechanism of hypoxic alveolar vasoconstriction => deepening of the V/Q disparity when the P-L shunt increases).

Indications:

  • drug of first choice in children in septic shock where volume expansion has failed
  • suitable for children with mild myocardial dysfunction and hypotension after cardiopulmonary resuscitation

Inodilators

Dobutamine

Dobutamine is a synthetic analogue of dopamine. It has no dopaminergic activity. It is a potent inodilator with inotropic β-1 and vasodilatory + chronotropic β-2 activity affecting arteriolar and venous channels. Its great advantage is that it does not have its own proarrhythmogenic effect and practically does not have its own toxic effect. In septic shock, we administer dobutamine if myocardialial dysfunction prevails. However, usually the main concern is the regulation of vascular tone, and SVRI-increasing drugs are preferred. In myocardial dysfunction, dobutamine alone or in combination with dopamine increases CO and subsequently blood pressure. However, dobutamine is most often combined with noradrenaline in conditions with myocardial dysfunction associated with a high flow form of shock (sepsis) or ARDS. Dobutamine and noradrenaline are currently the most frequently used combination of vasoactive substances in resuscitation care. In children with myocardial dysfunction, dobutamine increases systolic volume and CO, without a significant increase in heart rate. Dobutamine leads to a decrease in SVR and PVR. These mechanisms explain the increase in pulse pressure.

Indications for the administration of dobutamine in pediatrics are conditions of congestive heart failure with low CI and normal or slightly reduced blood pressure (viral myocarditis, drug-induced cardiomyopathies, [[myocardial infarction|myocardial infarctions] ] –m. Kawasaki, abnormal distance of the left coronary artery)

In myocardial failure, we start with dobutamine and ensure adequate intravascular volume according to CVP. Simple volume expansion is not appropriate here. Dobutamine is the inodilator of choice today. Dobutamine can also be administered as a single catecholamine into a peripheral vein.

Adverse effects include marked tachycardia, which may increase oxygen consumption and require dose reduction or change to another agent. Rarely, it may cause atrial or ventricular dysrhythmias, especially in patients with myocarditis, electrolyte imbalance, or at high doses. Dobutamine, like other inotropic agents, must be administered with caution in patients with left ventricular outflow obstruction (hypertrophic aortic stenosis).

The recommended dosage is 2-20 μg/kg/min. Children < 1 year may be less responsive to dobutamine or delta doses of dopamine. If doses > 22 μg/kg/min. do not lead to an improvement in the hemodynamic state, we are considering changing to adrenaline. Dobutamine is stable when diluted to 5% glucose or 1/1 FR.

Indications:

  • septic shock if myocardial dysfunction predominates
  • in combination with noradrenaline in conditions with myocardial dysfunction in connection with high flow form of shock (sepsis) or ARDS
  • conditions of congestive heart failure with low CI and normal or slightly reduced blood pressure (viral myocarditis, drug-induced cardiomyopathy, myocardial infarctions - Kawasaki muscle, abnormal distance of the left coronary artery)
  • in case of myocardial failure, we start with dobutamine and ensure adequate intravascular volume according to CVP values
Dopamine and dobutamine are drugs that increase systolic volume.
Phosphodiesterase III blockers

Phosphodiesterase III blockers (PDE III) are divided into bipyridine (amrinone and milrinone) and imidazole (enoximone and pyroximone) preparations. They do not belong to catecholamines, their effect is through selective inhibition of phosphodiesterase III, they do not act on adrenergic receptors or lead to inhibition of Na-K-ATPase. Their effect is similar to dobutamine, i.e. especially the β-2 effect. They increase myocardial contractility, have a vasodilating effect, and improve diastolic function (lusitropic effect). The disadvantage is a whole range of side effects, led by a high proarrhythmogenic effect, the result of which can be systemic hypotension with ventricular tachycardia.

When using phosphodiesterase III blockers, most experts recommend continuous infusion to achieve steady state. Because these drugs have a long half-life, their infusion should be stopped at the first signs of tachyarrhythmia, hypotension, or an excessive decrease in SVR, especially if liver or kidney dysfunction occurs at the same time. The hypotensive effects of phosphodiesterase III blockers can be eliminated by replacing co-administered adrenaline with noradrenaline. Milrinone, as a newer agent, has fewer side effects than amrinone, and is a more selective PDE III inhibitor.

Indications for amrinone/milrinone in children are:

  • normotensive patients with low CI but high SVRI despite epinephrine or nitrate infusion
  • low cardiac output in dilated forms of cardiomyopathy when other inotropic support fails
  • patients with down-regulation of β-1 and β-2 receptors
  • with toxic effects of nitrates
  • conditions with severe heart insufficiency refractory to other treatment
  • postoperative conditions in cardiac surgery

Drug affecting venous return (preload)

Administering preload = diuretics and venodilators in heart failure with reduced contractility will improve cardiac performance by reducing ventricular size and reducing wall tension. First of all, we reduce preload by restricting fluids and administering diuretics.

Diuretics

Diuretics relieve symptoms of pulmonary congestion and peripheral edema. We most often usefurosemide in a dose of 0.5–2 mg/kg i.v. as a bolus according to diuresis, or continuously up to a maximum total dose of 10 mg/kg/day. By directly acting on the loop of Henle, it causes the excretion of ions Na, K, Cl and body water. It has a quick and short-term effect.

During long-term diuretic treatment, when there is a risk of developing secondary hyperaldosteronism and hypokalemia, spironolactone is indicated in a dose of 1-3 mg/kg/day divided into 3 doses. Spironolactone is a competitive aldosterone inhibitor acting on the distal renal tubule. It has a very weak diuretic effect by itself, but potentiates the effect of other diuretics. It partially antagonizes the loss of K ions. In combination with ACE inhibitors or excessive potassium substitution, it causes hyperkalemia.


The administration of diuretics and venodilators has adverse effects in patients with reduced myocardial contractility and circulating volume deficit or insufficient ventricular filling!


A farm affecting preload and afterload

The common denominator for this group of drugs is reduction of peripheral vascular resistance. They have a combined effect on veins and arteries. It should be emphasized that high peripheral vascular resistance is a frequent symptom during shock states in children. We are talking about the fact that hypodynamic shock is typical for children. Affecting the resistance and capacity of the systemic vascular bed has an effect on cardiac performance. An increase in peripheral vascular resistance with unchanged preload and contractility decreases cardiac output. The use of vasodilators and other drugs with a relaxing effect on the smooth muscle of peripheral vessels can modify cardiac performance in heart failure. Peripheral vascular vasodilatation reduces myocardial afterload. By increasing the capacity of the systemic flow, the preload of the myocardium also decreases and the filling volume of the heart decreases. However, the reduction of peripheral resistance carries the risk of systemic vasodilation, which in the case of subclinical or unrecognized hypovolemia can lead to life-threatening hypotension. Simultaneously with the reduction of SVR, the regulatory mechanisms of fluid redistribution are disrupted. When using vasodilator therapy, it is advisable to monitor filling and systemic pressures. Medicines that reduce high SVR include sodium nitroprusside, nitroglycerin and ACE inhibitors, and to a lesser extent dehydrobenzperidol or chlorpromazine.

Sodium nitroprusside

Nitroprusside is a fast-acting peripheral vasodilator. It has a direct vasodilating effect on arterioles and veins. It primarily reduces afterload and thus increases cardiac output. The result is reduced filling of the left ventricle, reduction of pulmonary congestion, reduction of volume and pressure in the left ventricle, better emptying of the left ventricle in systole, reduced oxygen consumption by the myocardium. Its effect is tied to its immediate administration, i.e. after stopping the infusion, the effect is immediately lost. When using it, invasive blood pressure monitoring is absolutely necessary. Prolonged administration may lead to a rise in serum cyanide levels; their control is necessary. During intoxication, disorders of consciousness, MAC appear. The recommended dose is 0.5–10 μg/kg/min, the dose is titrated according to the effect. As a rule, we start with a low dose and, depending on the effect, increase the dose by approx. 0.5 μg/kg/min after 10 minutes. Nitroprusside can be combined with dopamine or dobutamine because they have a synergistic effect on increasing cardiac output. Due to its drastic effect, which can also be associated with serious complications, we only use nitroprusside in the most severe cases.

Nitroglycerin

Venodilators are indicated for elevated end-diastolic pressure. The main representative is nitroglycerin. It has a direct venodilating effect, it dilates the smooth muscle of the vascular wall, predominantly systemic veins and coronary arteries. It reduces venous return and reduces congestion in the systemic and pulmonary basins. In low doses, it leads to venodilatation and reduction of preload. High doses cause more pronounced vasodilation in the pulmonary basin (cave: congestion!), dilation of arterioles and reduction of afterload. Pharmacological effects depend mainly on the state of the intravascular volume, less on the dose (hypovolemia increases the risk of hypotension). Usual doses are 0.25–5 μg/kg/min continuously i.v.

ACE inhibitors

ACE inhibitors lead to vasodilation and reduction of aldosterone secretion. The result is increased excretion of sodium, which leads to a decrease in systemic peripheral resistance, a decrease in EDP and an increase in cardiac output. Another positive effect is the ability to remodel the hypertrophic myocardium of the ventricles. A representative is e.g. enalapril, doses p.o. 0.15–0.5 mg/kg/d in 1–2 doses, for i.v. treatment 5–10 μg/kg/dose 1–3 times within 24 hours

Steroids

Administration of hydrocortisone should be reserved for conditions unresponsive to adequate treatment with volume expansion and inotropes or situations with suspected or proven adrenal insufficiency. Children with septic shock and purpura, with previous chronic corticoid therapy and with adrenal or pituitary abnormalities are a risk group. The exact definition of adrenal insufficiency is not formulated, in case of septic shock resistant to catecholamines, the finding of a cortisol level < 500 nmol/l is considered to be its sign. The optimal dosage of steroids in children is not formulated, the most often recommended doses vary from 1 to 2 mg/kg of hydrocortisone as stress doses, alternatively 200 mg/d divided into 3-4 doses regardless of body weight. One of the recent recommendations for the administration of hydrocortisone: 0.18 mg/kg/hour. continuously. Recent meta-analyses have confirmed that methylprednisolone-type steroids in high doses, i.e. 30 mg/kg, are ineffective or even harmful in shock states.

Metabolic support

In cardiogenic shock, we administer fluids at a dose of 80-100% of the normal daily requirement, more precisely according to CVP and PAWP values. For other types of shock, we initially increase the daily fluid requirement to 150-200% of normal, and a significantly positive water balance is not unusual during the first day of therapy. bicarbonate therapy is chosen in a situation of severe MAC (pH < 7.1, HCO3 < 8) despite adequate volume expansion.

Other therapies

The finding of hypocalcemia can lead to a picture of left ventricular dysfunction, which is completely reversible after calcium correction. Especially in the smallest children, where glycogen reserves are reduced, we can find hypoglycemia. In general, the last option, the so-called rescue therapy, is ECMO (extracorporeal membrane oxygenation).

Complications of shock states

As part of the shock, we can find various multisystem dysfunctions. Their diagnosis is as important as their treatment. Possible complications of any shock state are:


Links

Source

  • HAVRÁNEK, Jiří: Šok. (edited)

Related Articles